Multiscale Coupled Urban Systems Project to Use Exascale Computing to Aid City Management

October 18, 2017

Oct. 18, 2017 — Walk around any city neighborhood and chances are it looks nothing like it did 20 years ago. Thanks to growing urbanization, cities globally are rapidly expanding and accounting for more of our world’s population, gross domestic product and greenhouse gases.

Adapting a city to keep up with evolving needs is one of the greatest daily challenges that city planners, designers and managers face. They must consider how proposed changes will affect systems and processes such as our power grid, green spaces and public health facilities. They also need to understand how these systems and processes will influence each other.

Charlie Catlett wants to make their job easier by using the power of exascale – supercomputers that will be at least 50 times faster than those in use today. Catlett, a senior computer scientist at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and a senior fellow at the Computation Institute, a joint institute of Argonne and the University of Chicago, leads the Multiscale Coupled Urban Systems project, which will create a computational framework for urban developers and planners to evaluate integrated models of city systems and processes.

With this framework, city planners can better examine complex systems, understand the relationships between them and predict how changes will affect them. It can ultimately help officials identify the best solutions to benefit urban communities.

“We’re focused on coupling models for urban atmosphere, building energy, socioeconomic activity and transportation, and we’ll will later expand to energy systems models,” Catlett said. “The framework will define what data will be exchanged between these models and how that data will be structured.”

Once the framework is complete, city planners such as those within the City of Chicago’s Department of Planning and Development can work with researchers to answer questions, raise their own and optimize design proposals.

“It’s a whole new frontier for us,” said Eleanor Gorski, the deputy commissioner of planning, design and historic preservation for the City of Chicago’s Department of Planning and Development.

“I think the most valuable aspect for us in city planning is being able to see how different conditions and parameters can affect different systems,” said Gorski. “For example, if you have a building that is 10 stories and the developers want to add five stories, one of the things we’d want to know is what effect that will have on transportation. Is it going to cause congestion? What we don’t have, and what I’m interested in, are those links between the data and the influence that one system has over another.”

Two models that Catlett and his collaborators are working to couple are EnergyPlus, a DOE program to model the energy demands of buildings, and Nek5000, a turbulence model that will track heat and airflow going through a city.

By pairing these two, researchers can, for example, capture how variations in local climate can influence heat transfer, ventilation and energy demands. From there, policy experts could propose ways to improve structure design in future developments.

First, however, researchers must determine what kind of information to share between models. Temperature, for example, is something Nek5000 could send to EnergyPlus, since air temperature naturally affects the temperature along building surfaces, as well as heating and cooling costs. Yet even though such models are connected, today most run independently, not generally coupled with others, Catlett said.

The coupling framework will also aim to incorporate data from sensory devices, like those used in Argonne’s urban Array of Things project. These sensors measure key components of the environment, such as ultraviolet and infrared light, cloud cover, temperature and humidity. These measurements can validate and improve existing models.

“The framework is key to solving these problems. It will essentially act as a data cache (short-term storage) through which a model can feed and receive information from another model or obtain data from sensory devices,” Catlett said.

One of the challenges is that simulations of models run at different rates. For example, simulating one hour of time with an atmospheric model may take a day of computing, while simulating the same amount of time with a building energy model may take half a second. To overcome this problem, researchers are examining various techniques.

“We’re exploring ways to match speeds by experimenting with the resolution of the simulations and by redistributing the resources on the machines, for example, having the more time-intensive simulation run on more computer cores than the less time-intensive one,” Catlett said.

Researchers are also examining how to make the framework flexible enough to handle a wide variety of models. With a more broad-based design, developers can use the framework to answer many different kinds of questions.

“To couple models, you’d traditionally have a laboratory such as Argonne or Oak Ridge develop a custom package. The problem is that it ends up being so specific that others can’t work with it, even if they’re trying to address similar questions. In that case, they have to get another custom package developed to address their study,” Catlett said.

“With our framework, we can eliminate this duplication of effort, but only if we design it in a general way such that other researchers can plug in their model with any of the others,” he said.

This project is funded by and is one of the applications of the Exascale Computing Project (ECP), a collaborative effort of the DOE Office of Science and the National Nuclear Security Administration, that seeks to provide breakthrough modeling and simulation solutions through exascale computing.

Laboratories participating in the Multiscale Coupled Urban Systems project include Argonne National Laboratory, Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory and Pacific Northwest National Laboratory.

The Array of Things project is supported by the National Science Foundation, with additional support from Argonne National Laboratory and the Chicago Innovation Exchange.


Source: Joan Koka, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire