National Cyberinfrastructure Prototype Moves into Full System Operation

May 11, 2023

May 11, 2023 — A multimillion-dollar cyberinfrastructure resource for the national research community has reached a milestone. The Prototype National Research Platform (PNRP)—an innovative system, funded by the National Science Foundation and created to advance scientific discoveries—has entered formal operations as a testbed for exploring a wide range of hardware and new approaches for moving data over high-performance content delivery networks.

Having successfully completed its acquisition review, PNRP will operate as a testbed for the next three years, during which researchers will explore the system’s design and hardware for use in science and engineering research. Innovative features include field programmable gate arrays (FPGAs), composable infrastructure and graphics processing units (GPUs). Following the testbed phase, PNRP will become broadly available through a formal allocations process.

“Reaching this milestone is a culmination of a multi-year process from proposal, through acquisition, deployment, early user operations and formal review. It means the attainment of our goal to provide the research community with an open system created for growth and inclusion; a way for academic institutions to join and participate in a national system to enlarge and enrich the national cyberinfrastructure ecosystem,” said Frank Würthwein, director of the San Diego Supercomputer Center (SDSC) at the University of California San Diego.

As a distributed system, PNRP features hardware at three primary sites—SDSC, the University of Nebraska-Lincoln (UNL) and the Massachusetts Green High Performance Computing Center (MGHPCC). In addition to the computing hardware at each of the primary sites, the system includes five data caches that are collocated and distributed on the Internet2 network backbone. The data caches provide data replication and movement services that reduce the round trip latencies from anywhere in the U.S. to about 10 milliseconds, or 0.01 seconds.

“The PNRP collaboration represents the future of distributed research computing, where the sources and users of data are part of an integrated fabric. We are excited to support this next phase of the project and look forward to working with the PNRP team over the coming years to realize a vision of enabling research data, anywhere, any time,” said James Deaton, vice president of Network Services at Internet2.

Reliability testing of the system has been run to identify any problems that in rare instances might occur, or that become apparent only when running at scale. According to PNRP administrators, the tests showed that PNRP hardware at each of the facility sites performed well.

“One of the most interesting features of the PNRP is the distributed systems management model,” said Derek Weitzel, who leads UNL’s responsibility for systems administration in the new platform. “PNRP was integrated into existing infrastructure that had been developed over the past several years. The Kubernetes-based approach substantially reduced the time to deploy and integrate hardware. UNL received the cluster on a Monday and had jobs running on Friday that same week, something that would be nearly impossible with a traditional HPC cluster.”

John Goodhue is executive director of MGHPCC, which is operated by a consortium of universities in the northeast, serves thousands of researchers locally and around the world and houses one of the PNRP GPU resources—providing a full complement of data center facility, networking, security and 24/7 operations. “We are pleased to be collaborating on PNRP, which, like MGHPCC, seeks to strengthen the national CI ecosystem through regionally based partnerships,” Goodhue said. “PNRP is innovative in technological and organizational dimensions, both of which are essential ingredients to advancing research.”

Early-User feedback

PNRP underwent a 30-day Early User Operations phase, during which the system was put through its paces on real-world applications in preparation for operations. Early-use cases ranged from studies on autonomous agents (e.g., robots, drones and cars) and cerebral organoids to synthesizing textures for 3D shapes and estimating sea surface temperature in cloudy conditions. Early users included researchers from University of California campuses, MIT, the International Gravitational Wave Network and others. Following are examples of early-use cases:

IceCube Neutrino Observatory

IceCube is located at the South Pole and consists of 5,160 digital optical modules (DOMs) distributed over one km3 of ice. Determining the direction of incoming neutrinos depends critically on accurately modeling optical properties of the ice. This numerically intensive process needs up to 400 GPU years and a new model must be constructed annually to account for ice flow.

The observatory’s computing director, Benedikt Riedel, said, “PNRP’s usability was very good and porting efforts were minimal, with only storage needing to be accessed differently and the computation appearing like any other Open Science Grid (OSG) site,” adding that performance of the A10 GPUs was excellent.

Genomics Processing and Analysis

UC San Diego’s Tianqi Zhang and Tajana Rosing, one of the PNRP co-principal investigators, developed applications that run on FPGA accelerators for basic genomics processing components, like sequence trimming and alignment, and integrated them with the pipelines for COVID-19 phylogenetic inference, microbial metagenome analysis and cancer variant detection.

“It’s pretty easy to migrate the previous programs to the new U55C cluster [PNRP]. The development platform is also similar to the local environment, with only a few board configurations needing administrator intervention. We are currently scaling up and optimizing the accelerators on the multi-FPGA nodes. If successful, it will provide O(10x) speedup and O(100x) power savings compared to CPU,” said Zhang.

According to Robert Sinkovits, an expert in scientific applications at SDSC, with the variety and scale of applications and use cases, SDSC “feels confident the [scientific] community will be able to make excellent use of PNRP.”

Support from Industry

Industry partners provide key technical features of the HPC subsystem, which include a mix of FPGA chips, GPUs with memory and storage in a fully integrated extremely low-latency fabric from GigaIO, which provides the composable architecture of the new platform. PNRP’s high-performance, low latency cluster integrated by Applied Data Systems (ADS) features composable PCIe fabric technology, along with FPGAs and FP64 GPUs, and two A10-based GPU clusters integrated by Supermicro, one located at UNL and one at MGHPCC.

According to GigaIO, composability provides users flexibility and the ability to use accelerators such as GPUs and FPGAs in an easy-to-orchestrate, reconfigurable system that saves time and makes optimal use of the resources. “The ability to build formerly impossible computing configurations and seamlessly transform systems to match workloads enables customers like SDSC to do more science for less money. We are proud to have worked closely with SDSC, ADS and Gigabyte to bring this revolutionary system online and make it available to all PNRP researchers,” said Alan Benjamin, CEO of GigaIO.

ADS President Craig Swanson said that it was an honor to be selected as the integration vendor partner to build, configure and support the cutting edge composable infrastructure.  “It’s only our ability to execute and work closely with our partners, that we are able to stand up such bleeding-edge technology to aide in the research community’s quest to push the boundaries of science,” he said.

PNRP is supported by the National Science Foundation (award no. 2112167).


Source: San Diego Supercomputer Center

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire