National Synchrotron Light Source II Celebrates Two Years of User Operations

August 28, 2017

BROOKHAVEN, N.Y., Aug. 28, 2017 — In July of 2017, the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory wished a happy second birthday to the National Synchrotron Light Source II (NSLS-II). Located at Brookhaven, NSLS-II is a DOE Office of Science User Facility that provides ultra-bright x-rays for cutting-edge science research.

During its second year of user operations, NSLS-II reached significant milestones and added several beamlines that offer researchers exciting new capabilities across all fields of science. On July 17, the facility recorded 168 hours (seven days) of continuous beam, showcasing its stability and reliability. And on July 20, NSLS-II delivered user beam at 325 milliamps (mA) for the first time, creating the brightest light the facility has seen so far. Because NSLS-II is in its early years of operations, its level of brightness is still increasing; the goal is to reach 350 mA by the end of September.

Reaching another milestone, NSLS-II named Joanna Krueger its 1000th lifetime user on June 28. A chemistry professor at the University of North Carolina at Charlotte, Krueger uses NSLS-II to study “sleeping beauty” transposase, an inactive enzyme found in fish that becomes active when inserted into human cells.

“I am impressed by all the improvements: automation for data collection and fast data reduction,” Krueger said. “I have never seen my data reduced so fast—and I have been doing this work since the mid-nineties. I am very pleased with the facility and the assistance from the beamline staff. It is amazing.”

The great number and diversity of researchers using NSLS-II is a huge success, especially considering the still-growing facility is operating at less than half its capacity. There are currently 20 beamlines (experimental stations) in operation but, when completed, NSLS-II will have 60 beamlines. In other words, at least 60 different experiments could occur at the same time.

Eight new beamlines were added to NSLS-II during its second year, expanding the facility’s reach into new fields of research and allowing scientists to conduct experiments using new techniques.

The latest beamline to transition into operations was beamline 2-ID, which enables scientists to measure a sample’s response across a range of angles—nearly a full circle around the sample—using high-intensity soft x-rays. This technique is used to determine dynamics of electrons in a wide variety of materials.

“This beamline will offer world-leading capabilities in terms of soft inelastic x-ray scattering,” said Qun Shen, Deputy Director for Science at NSLS-II. “It is going to be a really cutting-edge technique for studying dynamics and catalysis.”

Beamline 2-ID is particularly notable for its ability to study light that bounces off individual atoms, but achieving world-class capabilities is the goal for every beamline at NSLS-II.

Such is the case for 8-BM, a new beamline that uses tender x-rays to image and probe elements that are common in biological structures. 8-BM offers tender energy x-rays—x-rays with an energy from one kiloelectron volt (keV) to four keV—and, amongst other capabilities, allows scientists to study environmental questions – for example, how nuclear materials decay and affect the environment.

“From five or six keV and up is relatively straightforward to achieve,” Shen said. “But very few beamlines around the world can put emphasis on the tender x-ray energy.”

Another new beamline, 4-ID, started general user operations in July. This beamline combines the versatile control of beam size, energy, and polarization to enable real-time studies of materials growth and processing, measurements of the atomic structure of functional surfaces and interfaces, and characterization of the electronic order in quantum materials.

Brookhaven is also partnering with outside institutions to fund the construction and operations of new beamlines at NSLS-II. For example, beamline 17-BM was established through a partnership with the Case Center for Synchrotron Biosciences at Case Western Reserve University. This beamline uses wide-beam x-rays to modify proteins and monitor their structural changes, a “footprinting” technique that was previously unavailable at NSLS-II.

One of NSLS-II’s biggest partners is the National Institute of Standards and Technology (NIST), a government organization that promotes innovation and enhances industrial competitiveness in the U.S. NIST is funding the construction and operations of three beamlines at NSLS-II: two spectroscopy beamlines currently under construction, and beamline 6-BM, which had first light on July 25. At 6-BM, researchers can use x-ray absorption spectroscopy and x-ray diffraction to study how atoms stack together to make materials like batteries and computer chips.

Other facilities within Brookhaven Lab are also working with NSLS-II on new beamlines, such as beamline 11-BM. This beamline was established through a partnership with Brookhaven’s Center for Functional Nanomaterials.

“This is where scientists can do x-ray scattering in real time to see how thin films of nanostructures self-organize into something that may be very useful,” Shen said. “Before this beamline came on board, we didn’t have such a dedicated capability.”

The beamlines at NSLS-II are continuously undergoing changes to improve and expand their functionality. At beamline 3-ID, for example, scientists developed a new imaging method that allows researchers to view an x-ray-transparent sample in real time with quantitative phase measurement.

In addition to opening new beamlines and making new research techniques available to scientists, NSLS-II’s second year of operations was notable for important scientific breakthroughs. Researchers used beamline 8-ID to develop new cathode materials that could facilitate the mass production of sodium batteries. Another team of researchers used beamline 23-ID-1 to advance the study of high-temperature superconductivity, a phenomena that has baffled scientists for decades. The team discovered that static ordering of electrical charges may cooperate, rather than compete, with superconductivity.

There is a bright future ahead for NSLS-II. 8 beamlines are currently under construction, and the NSLS-II team is working with the scientific community to develop the next set of beamlines to build. Other future plans for NSLS-II include streamlining logistics for users and making beam time available on multiple beamlines with a single proposal.

“The last two years have been exciting as we have watched the NSLS-II user community grow and the numbers increase,” said Gretchen Cisco, User Administration Manager at NSLS-II. “We are continuously identifying ways to improve the NSLS-II user experience. Based on user feedback, we are updating the proposal allocation and scheduling system to make it easier to apply for beam time.”

From its world-class beamlines to the accessibility for its users, NSLS-II has already distinguished itself as a pillar of synchrotron science.

About BNL

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Source: BNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This