NCSA Collaborates with Illinois ACES to Identify Genes Responsible for Complex Traits

December 17, 2018

URBANA, Ill., Dec. 17, 2018 — In biomedical research, plant breeding, and countless other endeavors, geneticists are on the hunt for the specific genes responsible for disease susceptibility, yield, and other traits of interest. Essentially, they’re looking for needles in the enormous haystack that is the genome of an organism.

As a frame of reference, the human genome is made up of 3.2 billion base pairs, an estimated 30,000 genes. Where do geneticists even start?

For the past 15 years, many have relied on genome-wide association studies (GWAS).

“I view a GWAS as a way to reduce the size of the haystack into genomic regions that potentially could contain causal mutations underlying a trait,” says Alex Lipka, assistant professor of biometry in the Department of Crop Sciences at the University of Illinois and author of a new Heredity study expanding the scope of GWAS.

To run a GWAS, scientists conduct computationally intensive statistical analyses to scour the genetic code for differences. Specific variations in DNA, called markers, that exhibit the highest degree of statistical association are thought to be near genes that make biological contributions to the trait. Sometimes, these associated markers are clustered together in a particular region of the genome, narrowing the haystack.

Lipka says the approach has been used in a wide variety of organisms to identify major genes contributing to key traits, but it falls short in detecting small-effect genes or gene interactions – a phenomenon known as epistasis – that may be just as important.

“The state-of-the-art statistical approach for GWAS is to test one marker at a time for the strength of its association with the trait,” he says. “If you think about the true genetic underpinnings of a trait, it’s not just one gene controlling things. Multiple genes contribute to phenotypic variation in an additive manner, and are epistatically interacting with one another. What we try to do in our study is explore the use of a statistical approach that is more biologically accurate. Not only are we finding statistical models that include multiple markers at a time, we also find multiple two-way interaction effects at a time.”

The researchers wanted to see if their new approach, which they call SPAEML, could accurately detect the underpinnings of simulated traits with genetic sources similar to Alzheimer’s disease in humans and flower structure in corn; these traits have already been described to some extent in the scientific literature. Using custom-built software, which they have made freely available to other researchers, and massive computers at the National Center for Supercomputing Applications, the team tested whether SPAEML could detect simulations of the traits in the dataset.

“In both the human and corn datasets, we were able to identify our simulated markers,” Lipka says. “And in the human dataset we were able to distinguish between additive and interacting loci.”

The finding does not reveal new information about Alzheimer’s disease; remember, SPAEML was tested against existing knowledge of the trait’s genetic structure. Instead, it represents proof-of-concept that advanced GWAS methods like SPAEML can detect multiple markers that contribute to the disease, even in small ways. The researchers point out that the collective contributions of such markers can result in massive changes that may lead to the disease.

Although geneticists are well aware that complex traits are rarely controlled by a single gene, until now it had been too computationally difficult to test for multiple markers or their interactions.

“The problem is the combinatorial explosion of possibilities that must be tested, because we’re looking at pairs of markers,” says co-author Liudmila Mainzer, technical program manager for Genomics at NCSA. “The algorithm needs to evaluate tens of thousands, hundreds of thousands, possibly millions of models in order to select the best one. It could take years in sheer computational time, which is why no one has ever done it.”

It took about four years for the team to develop and refine a method that could deal with that combinatorial explosion, bringing millions of data points down to about 15,000, a number SPAEML could handle easily. Going forward, the researchers plan to unleash SPAEML on datasets with unknown genetic structures. They’re already working with collaborators in the crop breeding industry and human health research to launch next steps.

“This research is really hard, but it’s the right way to approach this scientific problem. With access to supercomputing resources, outstanding students, and a bit of our own youthful foolhardiness – who knows, we might just manage it,” Mainzer jokes. “Based on the feedback we’ve had so far, it has been very rewarding,”

The article, “An assessment of true and false positive detection rates of stepwise epistatic model selection as a function of sample size and number of markers,” is published in Heredity [DOI: 10.1038/s41437-018-0162-2]. Authors include Angela H. Chen, Weihao Ge, William Metcalf, Eric Jakobsson, Liudmila Sergeevna Mainzer, and Alexander E. Lipka. William Metcalf is associated with the Rose-Hulman Institute of Technology, but all other authors have affiliations with units across the University of Illinois.

The research conducted was supported by the United States Department of Agriculture National Institute of Food and Agriculture, the University of Illinois CompGen Student Fellowship Program, University of Illinois startup funds, and the UIUC Center for Computational Biotechnology and Genomic Medicine.


Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This