NCSA Details 2015 Blue Waters Symposium

June 1, 2015

June 1 — The 2015 Blue Waters Symposium, held May 10-13 at Oregon’s beautiful Sunriver Resort, brought together leaders in petascale computational science and engineering to share successes and methods.

Around 130 attendees, many of whom were Blue Waters users and the NCSA staff who support their work, enjoyed presentations on computational advances in a range of research areas—including sub-atomic physics, weather, biology, astronomy, and many others—as well as keynotes from innovative thinkers and leaders in high-performance computing. Over the three days of the symposium, 58 science teams from across the country presented on their work on Blue Waters.

“This event showcases the importance of a computational resources of this size,” said NCSA Director Ed Seidel. “Thanks to Blue Waters, detailed simulations of complex astrophysical phenomena, HIV, earthquake events, and industrial engineering processes are being done, leading to major scientific breakthroughs or new products that cannot be achieved any other way.”

Indeed, the importance of access to the computational power of the Blue Waters supercomputer could be heard from one presenter after another, no matter the research domain.

Thomas Cheatham, associate professor of medicinal chemistry and adjunct assistant professor of bioengineering at the University of Utah, is working on accurate modeling of RNA and other biomolecules, like nucleic acids and proteins. Thanks to Blue Waters, his team can now perform the same amount work in days instead of what used to take years. And for Blue Waters Professor Aleksei Aksimentiev, an associate professor of physics at the University of Illinois at Urbana-Champaign, the supercomputer’s scale is a requirement for accurate structure predictions and determining the molecular mechanism of a key step in the DNA repair process.

Christian Ott, professor of astrophysics at Caltech, said with access to Blue Waters, his team is now performing simulations that are pushing the frontier of supernova theory, enabling next-generation simulations with higher-resolution, including the first 3D global simulation of the MRI in rapidly rotating supernova. Brian O’Shea, assistant professor of physics and astronomy at Michigan State University, needs the system’s fast I/O and interconnects in combination with the large amount of memory to explore the earliest galaxies. It is computationally expensive work made possible through access to Blue Waters.

Leigh Orf, professor of atmospheric science at Central Michigan University, used 20,000 cores with over 100TB of data to simulate an EF5 tornado for the first time, which wouldn’t have been possible before Blue Waters. And Philip Maechling, information technology architect at Southern California Earthquake Center—which is studying the effects of earthquakes and assessing the maximum ground motions to help in establishing building codes—said that thanks to GPU optimization on Blue Waters, they were able to finish in 14 days work that previously took 61 days running on CPUs on both Blue Waters and the Stampede supercomputer at the Texas Advanced Computing Center at The University of Texas at Austin. This work also yielded predictions with much higher resolution than those from USGS.

Keynote Speakers Address Future of Supercomputing

William T.C. Kramer, director and principal investigator of the Blue Waters project, gave the opening keynote on the need for sustained petascale+ computing and data analysis. Recently, Kramer convened and led two community workshops (called Brainstorming HPCD) to identify the requirements from science and engineering communities for future high-performance computational and data analysis resources and services. Irene Qualters, director of the National Science Foundation’s Division of Advanced Cyberinfrastructure, also gave a plenary talk about where she sees supercomputing heading in the future and the paths it may take along the way.

Arden L. Bement, Jr, Davis A. Ross Distinguished Professor Emeritus and adjunct professor of the College of Technology at Purdue University with experience in executive positions in government, industry, and academia, gave a retrospective on the last three decades of NSF’s investments in academic supercomputing and the path already traveled.

The science community’s use of computation as a method of research has grown dramatically over that time period, a trend he believes will continue to evolve, “there will be more natural bridges between the human brain and the machine, helping to combine what the human can do best and what the machine can do best, faster.”

Bement said Blue Waters has shown this future has already started, “science and engineering are now able to solve more impactful problems: improving quality of life through better pharmaceuticals and drug discovery, through better diagnosis and understanding of chronic health problems and the connection with genetics.”

For Satoshi Matsuoka, professor at the Global Scientific Information and Computing Center of Tokyo Institute of Technology (GSIC), he believes demands for extreme computing and huge data processing is leading to a future with an inevitable convergence of the two infrastructures.

“Supercomputing is not just about providing the hardware resources; it’s about the software, the consulting, the libraries, the applications, and it is even about maintaining the open source. You get all that with Blue Waters, and the cloud lacks pretty much everything except the low-level hardware,” he explained. “That is why I believe you would find cloud vendors are eager to talk convergence.”

Scientists aren’t going to stop needing computation for their research, and they will seek it out in any form they can get it, big or small. In Matsuoka’s all-inclusive future, sustained growth in data capabilities, not compute, will advance the capacity and thus the overall capacities towards accelerating research and ultimately the industry.

Steve Scott, senior vice president and chief technology officer for Cray, wrapped up the symposium discussion of the future of big compute with his keynote on programming and technology for the next decade.

In the past few decades, simulation has become more and more important, and now every area of science has problems they can only address with simulation; Blue Waters gives them one of the most powerful tools in the world to do their work, as Scott emphasizes.

However, according to him, teams who are writing codes and using the Blue Waters system today need to start converting their codes to have multiple layers of parallelism. “Most people today are still writing straight MPI codes, and we need to have hierarchical parallelism,” said Scott. “And then the next step after that is paying more attention to how they exploit data locality and figuring out how to deal with deepening memory hierarchies.”

Scott discussed significant challenges—such as rapidly increasing on-node parallelism, varying forms of heterogeneity, deepening memory hierarchies, growing concerns around resiliency and silent data corruption, and worsening storage bottlenecks—that continue to surface for programmers as compute system continue to evolve.

“We need to start teaching programming as a parallel exercise from day one, so students learn parallel programming first, verses learning serial programming and then later trying to convert it.” He continued “and they need to be told what is expensive versus what is not expensive. Adding two numbers—not expensive. Moving data from one place to another—expensive.”

Presentations from the Symposium are available online at: https://bluewaters.ncsa.illinois.edu/symposium-2015-schedule-descriptions.

Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Microsoft Closes Confidential Computing Loop with AMD’s Milan Chip

September 22, 2022

Microsoft shared details on how it uses an AMD technology to secure artificial intelligence as it builds out a secure AI infrastructure in its Azure cloud service. Microsoft has a strong relationship with Nvidia, but is also working with AMD's Epyc chips (including the new 3D VCache series), MI Instinct accelerators, and also... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as the first computer programmer. The company also announced tw Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing that Hopper-generation GPUs (which promise greater energy eff Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

AWS Solution Channel

Shutterstock 1194728515

Simulating 44-Qubit quantum circuits using AWS ParallelCluster

Dr. Fabio Baruffa, Sr. HPC & QC Solutions Architect
Dr. Pavel Lougovski, Pr. QC Research Scientist
Tyson Jones, Doctoral researcher, University of Oxford

Introduction

Currently, an enormous effort is underway to develop quantum computing hardware capable of scaling to hundreds, thousands, and even millions of physical (non-error-corrected) qubits. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1166887495

Improving Insurance Fraud Detection using AI Running on Cloud-based GPU-Accelerated Systems

Insurance is a highly regulated industry that is evolving as the industry faces changing customer expectations, massive amounts of data, and increased regulations. A major issue facing the industry is tracking insurance fraud. Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing t Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Survey Results: PsiQuantum, ORNL, and D-Wave Tackle Benchmarking, Networking, and More

September 19, 2022

The are many issues in quantum computing today – among the more pressing are benchmarking, networking and development of hybrid classical-quantum approaches. Read more…

HPC + AI Wall Street to Feature ‘Spooky’ Science for Financial Services

September 18, 2022

Albert Einstein famously described quantum mechanics as "spooky action at a distance" due to the non-intuitive nature of superposition and quantum entangled par Read more…

Analog Chips Find a New Lease of Life in Artificial Intelligence

September 17, 2022

The need for speed is a hot topic among participants at this week’s AI Hardware Summit – larger AI language models, faster chips and more bandwidth for AI machines to make accurate predictions. But some hardware startups are taking a throwback approach for AI computing to counter the more-is-better... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Leading Solution Providers

Contributors

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire