NCSA Details 2015 Blue Waters Symposium

June 1, 2015

June 1 — The 2015 Blue Waters Symposium, held May 10-13 at Oregon’s beautiful Sunriver Resort, brought together leaders in petascale computational science and engineering to share successes and methods.

Around 130 attendees, many of whom were Blue Waters users and the NCSA staff who support their work, enjoyed presentations on computational advances in a range of research areas—including sub-atomic physics, weather, biology, astronomy, and many others—as well as keynotes from innovative thinkers and leaders in high-performance computing. Over the three days of the symposium, 58 science teams from across the country presented on their work on Blue Waters.

“This event showcases the importance of a computational resources of this size,” said NCSA Director Ed Seidel. “Thanks to Blue Waters, detailed simulations of complex astrophysical phenomena, HIV, earthquake events, and industrial engineering processes are being done, leading to major scientific breakthroughs or new products that cannot be achieved any other way.”

Indeed, the importance of access to the computational power of the Blue Waters supercomputer could be heard from one presenter after another, no matter the research domain.

Thomas Cheatham, associate professor of medicinal chemistry and adjunct assistant professor of bioengineering at the University of Utah, is working on accurate modeling of RNA and other biomolecules, like nucleic acids and proteins. Thanks to Blue Waters, his team can now perform the same amount work in days instead of what used to take years. And for Blue Waters Professor Aleksei Aksimentiev, an associate professor of physics at the University of Illinois at Urbana-Champaign, the supercomputer’s scale is a requirement for accurate structure predictions and determining the molecular mechanism of a key step in the DNA repair process.

Christian Ott, professor of astrophysics at Caltech, said with access to Blue Waters, his team is now performing simulations that are pushing the frontier of supernova theory, enabling next-generation simulations with higher-resolution, including the first 3D global simulation of the MRI in rapidly rotating supernova. Brian O’Shea, assistant professor of physics and astronomy at Michigan State University, needs the system’s fast I/O and interconnects in combination with the large amount of memory to explore the earliest galaxies. It is computationally expensive work made possible through access to Blue Waters.

Leigh Orf, professor of atmospheric science at Central Michigan University, used 20,000 cores with over 100TB of data to simulate an EF5 tornado for the first time, which wouldn’t have been possible before Blue Waters. And Philip Maechling, information technology architect at Southern California Earthquake Center—which is studying the effects of earthquakes and assessing the maximum ground motions to help in establishing building codes—said that thanks to GPU optimization on Blue Waters, they were able to finish in 14 days work that previously took 61 days running on CPUs on both Blue Waters and the Stampede supercomputer at the Texas Advanced Computing Center at The University of Texas at Austin. This work also yielded predictions with much higher resolution than those from USGS.

Keynote Speakers Address Future of Supercomputing

William T.C. Kramer, director and principal investigator of the Blue Waters project, gave the opening keynote on the need for sustained petascale+ computing and data analysis. Recently, Kramer convened and led two community workshops (called Brainstorming HPCD) to identify the requirements from science and engineering communities for future high-performance computational and data analysis resources and services. Irene Qualters, director of the National Science Foundation’s Division of Advanced Cyberinfrastructure, also gave a plenary talk about where she sees supercomputing heading in the future and the paths it may take along the way.

Arden L. Bement, Jr, Davis A. Ross Distinguished Professor Emeritus and adjunct professor of the College of Technology at Purdue University with experience in executive positions in government, industry, and academia, gave a retrospective on the last three decades of NSF’s investments in academic supercomputing and the path already traveled.

The science community’s use of computation as a method of research has grown dramatically over that time period, a trend he believes will continue to evolve, “there will be more natural bridges between the human brain and the machine, helping to combine what the human can do best and what the machine can do best, faster.”

Bement said Blue Waters has shown this future has already started, “science and engineering are now able to solve more impactful problems: improving quality of life through better pharmaceuticals and drug discovery, through better diagnosis and understanding of chronic health problems and the connection with genetics.”

For Satoshi Matsuoka, professor at the Global Scientific Information and Computing Center of Tokyo Institute of Technology (GSIC), he believes demands for extreme computing and huge data processing is leading to a future with an inevitable convergence of the two infrastructures.

“Supercomputing is not just about providing the hardware resources; it’s about the software, the consulting, the libraries, the applications, and it is even about maintaining the open source. You get all that with Blue Waters, and the cloud lacks pretty much everything except the low-level hardware,” he explained. “That is why I believe you would find cloud vendors are eager to talk convergence.”

Scientists aren’t going to stop needing computation for their research, and they will seek it out in any form they can get it, big or small. In Matsuoka’s all-inclusive future, sustained growth in data capabilities, not compute, will advance the capacity and thus the overall capacities towards accelerating research and ultimately the industry.

Steve Scott, senior vice president and chief technology officer for Cray, wrapped up the symposium discussion of the future of big compute with his keynote on programming and technology for the next decade.

In the past few decades, simulation has become more and more important, and now every area of science has problems they can only address with simulation; Blue Waters gives them one of the most powerful tools in the world to do their work, as Scott emphasizes.

However, according to him, teams who are writing codes and using the Blue Waters system today need to start converting their codes to have multiple layers of parallelism. “Most people today are still writing straight MPI codes, and we need to have hierarchical parallelism,” said Scott. “And then the next step after that is paying more attention to how they exploit data locality and figuring out how to deal with deepening memory hierarchies.”

Scott discussed significant challenges—such as rapidly increasing on-node parallelism, varying forms of heterogeneity, deepening memory hierarchies, growing concerns around resiliency and silent data corruption, and worsening storage bottlenecks—that continue to surface for programmers as compute system continue to evolve.

“We need to start teaching programming as a parallel exercise from day one, so students learn parallel programming first, verses learning serial programming and then later trying to convert it.” He continued “and they need to be told what is expensive versus what is not expensive. Adding two numbers—not expensive. Moving data from one place to another—expensive.”

Presentations from the Symposium are available online at: https://bluewaters.ncsa.illinois.edu/symposium-2015-schedule-descriptions.

Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire