NCSA Researchers Create Reliable Tool for Long-Term Crop Prediction in the U.S. Corn Belt

February 14, 2018

Feb. 14, 2018 — With the help of the Blue Waters supercomputer, at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign, Blue Waters Professor Kaiyu Guan and NCSA postdoc fellow, Bin Peng implemented and evaluated a new maize growth model. The CLM-APSIM model combines superior features in both Community Land Model (CLM) and Agricultural Production Systems sIMulator (APSIM), creating one of the most reliable tools for long-term crop prediction in the U.S. Corn Belt. Peng and Guan recently published their paper, “Improving maize growth processes in the community land model: Implementation and evaluation” in the Agricultural and Forestry Meteorology journal. This work is an outstanding example of the convergence of simulation and data science that is a driving factor in the National Strategic Computing Initiative announced by the White House in 2015.

Conceptual diagram for phenological stages in the original CLM, APSIM and CLM-APSIM models. Unique features in CLM-APSIM crop model are also highlighted. Note that the stage duration in this diagram is not proportional to real stage length, and only presented for illustrative purpose. Image courtesy of NCSA.

“One class of crop models is agronomy-based and the other is embedded in climate models or earth system models. They are developed for different purposes and applied at different scales,” says Guan. “Because each has its own strengths and weaknesses, our idea is to combine the strengths of both types of models to make a new crop model with improved prediction performance.” Additionally, what makes the new CLM-APSIM model unique is the more detailed phenology stages, an explicit implementation of the impacts of various abiotic environmental stresses (including nitrogen, water, temperature and heat stresses) on maize phenology and carbon allocation, as well as an explicit simulation of grain number.

With support from the NCSA Blue Waters project (funded by the National Science Foundation and Illinois), NASA and the USDA National Institute of Food and Agriculture (NIFA) Foundational Program, Peng and Guan created the prototype for CLM-APSIM. “We built this new tool to bridge these two types of crop models combining their strengths and eliminating the weaknesses.”

The team is currently conducting a high resolution regional simulation over the contiguous United States to simulate corn yield at each planting corner. “There are hundreds of thousands of grids, and we run this model over each grid for 30 years in historical simulation and even more for future projection simulation,” said Peng, “currently it takes us several minutes to calculate one model-year simulation over a single grid. The only way to do this in a timely manner is to use parallel computing with thousands of cores in Blue Waters.”

Peng and Guan examined the results of this tool at seven different locations across the U.S. Corn Belt, revealing that the CLM-APSIM model more accurately predicted and simulated phenology of leaf area index and canopy height, surface fluxes including gross primary production, net ecosystem exchange, latent heat, sensible heat and especially in simulating the biomass partition and maize yield in comparison to the earlier CLM4.5 model. The CLM-APSIM model also corrected a serious deficiency in the original CLM model that underestimated aboveground biomass and overestimated the Harvest Index, which led to a reasonable yield estimation with wrong mechanisms.

Additionally, results from a 13-year simulation (2001-2013) at three sites located in Mead, NE, (US-Ne1, Ne2 and Ne3) show that the CLM-APSIM model can more accurately reproduce maize yield responses to growing season climate (temperature and precipitation) than the original CLM4.5 when benchmarked with the site-based observations and USDA county-level survey statistics.

“We can simulate the past, because we already have the weather datasets, but looking into the next 50 years, how can we understand the effect of climate change? Furthermore, how can we understand what farmers can do to improve and mitigate the climate change impact and improve the yield?” Guan said.

Their hope is to integrate satellite data into the model, similar to that of weather forecasting. “The ultimate goal is to not only have a model, but to forecast in real-time, the crop yields and to project the crop yields decades into the future,” said Guan. “With this technology, we want to not only simulate all the corn in the county of Champaign, Illinois, but everywhere in the U.S. and at a global scale.”

From here, Peng and Guan plan to expand this tool to include other staple crops, such as wheat, rice and soybeans. They are projected to complete a soybean simulation model for the entire United States within the next year.

About NCSA

The National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign provides supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, University of Illinois faculty, staff, students, and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one third of the Fortune 50® for more than 30 years by bringing industry, researchers, and students together to solve grand challenges at rapid speed and scale.

About the Blue Waters Project

The Blue Waters petascale supercomputer is one of the most powerful supercomputers in the world, and is the fastest sustained supercomputer on a university campus. Blue Waters uses hundreds of thousands of computational cores to achieve peak performance of more than 13 quadrillion calculations per second. Blue Waters has more memory and faster data storage than any other open system in the world. Scientists and engineers across the country use the computing and data power of Blue Waters to tackle a wide range of challenges. Recent advances that were not possible without these resources include computationally designing the first set of antibody prototypes to detect the Ebola virus, simulating the HIV capsid, visualizing the formation of the first galaxies and exploding stars, and understanding how the layout of a city can impact supercell thunderstorms.


Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Students Gird for Cluster Mayhem at ASC19

April 23, 2019

Final cluster configurations have been set, and competitors in the ASC19 Student Supercomputer Challenge have started running the various AI models and HPC benchmarks that will determine who is declared champion. But if Read more…

By Alex Woodie

Student Cluster Season Opener: ASC19

April 22, 2019

Calling all computer sports fans! Now hear this:  The 2019 Student Cluster Competition season is officially underway with the beginning of the ASC19 event on Tuesday, April 22nd. For you millions of student cluster c Read more…

By Dan Stark

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This