NCSA Researchers Create Reliable Tool for Long-Term Crop Prediction in the U.S. Corn Belt

February 14, 2018

Feb. 14, 2018 — With the help of the Blue Waters supercomputer, at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign, Blue Waters Professor Kaiyu Guan and NCSA postdoc fellow, Bin Peng implemented and evaluated a new maize growth model. The CLM-APSIM model combines superior features in both Community Land Model (CLM) and Agricultural Production Systems sIMulator (APSIM), creating one of the most reliable tools for long-term crop prediction in the U.S. Corn Belt. Peng and Guan recently published their paper, “Improving maize growth processes in the community land model: Implementation and evaluation” in the Agricultural and Forestry Meteorology journal. This work is an outstanding example of the convergence of simulation and data science that is a driving factor in the National Strategic Computing Initiative announced by the White House in 2015.

Conceptual diagram for phenological stages in the original CLM, APSIM and CLM-APSIM models. Unique features in CLM-APSIM crop model are also highlighted. Note that the stage duration in this diagram is not proportional to real stage length, and only presented for illustrative purpose. Image courtesy of NCSA.

“One class of crop models is agronomy-based and the other is embedded in climate models or earth system models. They are developed for different purposes and applied at different scales,” says Guan. “Because each has its own strengths and weaknesses, our idea is to combine the strengths of both types of models to make a new crop model with improved prediction performance.” Additionally, what makes the new CLM-APSIM model unique is the more detailed phenology stages, an explicit implementation of the impacts of various abiotic environmental stresses (including nitrogen, water, temperature and heat stresses) on maize phenology and carbon allocation, as well as an explicit simulation of grain number.

With support from the NCSA Blue Waters project (funded by the National Science Foundation and Illinois), NASA and the USDA National Institute of Food and Agriculture (NIFA) Foundational Program, Peng and Guan created the prototype for CLM-APSIM. “We built this new tool to bridge these two types of crop models combining their strengths and eliminating the weaknesses.”

The team is currently conducting a high resolution regional simulation over the contiguous United States to simulate corn yield at each planting corner. “There are hundreds of thousands of grids, and we run this model over each grid for 30 years in historical simulation and even more for future projection simulation,” said Peng, “currently it takes us several minutes to calculate one model-year simulation over a single grid. The only way to do this in a timely manner is to use parallel computing with thousands of cores in Blue Waters.”

Peng and Guan examined the results of this tool at seven different locations across the U.S. Corn Belt, revealing that the CLM-APSIM model more accurately predicted and simulated phenology of leaf area index and canopy height, surface fluxes including gross primary production, net ecosystem exchange, latent heat, sensible heat and especially in simulating the biomass partition and maize yield in comparison to the earlier CLM4.5 model. The CLM-APSIM model also corrected a serious deficiency in the original CLM model that underestimated aboveground biomass and overestimated the Harvest Index, which led to a reasonable yield estimation with wrong mechanisms.

Additionally, results from a 13-year simulation (2001-2013) at three sites located in Mead, NE, (US-Ne1, Ne2 and Ne3) show that the CLM-APSIM model can more accurately reproduce maize yield responses to growing season climate (temperature and precipitation) than the original CLM4.5 when benchmarked with the site-based observations and USDA county-level survey statistics.

“We can simulate the past, because we already have the weather datasets, but looking into the next 50 years, how can we understand the effect of climate change? Furthermore, how can we understand what farmers can do to improve and mitigate the climate change impact and improve the yield?” Guan said.

Their hope is to integrate satellite data into the model, similar to that of weather forecasting. “The ultimate goal is to not only have a model, but to forecast in real-time, the crop yields and to project the crop yields decades into the future,” said Guan. “With this technology, we want to not only simulate all the corn in the county of Champaign, Illinois, but everywhere in the U.S. and at a global scale.”

From here, Peng and Guan plan to expand this tool to include other staple crops, such as wheat, rice and soybeans. They are projected to complete a soybean simulation model for the entire United States within the next year.

About NCSA

The National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign provides supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, University of Illinois faculty, staff, students, and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one third of the Fortune 50® for more than 30 years by bringing industry, researchers, and students together to solve grand challenges at rapid speed and scale.

About the Blue Waters Project

The Blue Waters petascale supercomputer is one of the most powerful supercomputers in the world, and is the fastest sustained supercomputer on a university campus. Blue Waters uses hundreds of thousands of computational cores to achieve peak performance of more than 13 quadrillion calculations per second. Blue Waters has more memory and faster data storage than any other open system in the world. Scientists and engineers across the country use the computing and data power of Blue Waters to tackle a wide range of challenges. Recent advances that were not possible without these resources include computationally designing the first set of antibody prototypes to detect the Ebola virus, simulating the HIV capsid, visualizing the formation of the first galaxies and exploding stars, and understanding how the layout of a city can impact supercell thunderstorms.


Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

At 50, Foxconn Celebrates Graduation from Connectors to AI Supercomputing

October 8, 2024

Foxconn is celebrating its 50th birthday this year. It started by making connectors, then moved to systems, and now, a supercomputer. The company announced it would build the supercomputer with Nvidia's Blackwell GPUs an Read more…

ZLUDA Takes Third Wack as a CUDA Emulator

October 7, 2024

The ZLUDA CUDA emulator is back in its third invocation. At one point, the project was quietly funded by AMD and demonstrated the ability to run unmodified CUDA applications with near-native performance on AMD GPUs. Cons Read more…

Quantum Companies D-Wave and Rigetti Again Face Stock Delisting

October 4, 2024

Both D-Wave (NYSE: QBTS) and Rigetti (Nasdaq: RGTI) are again facing stock delisting. This is a third time for D-Wave, which issued a press release today following notification by the SEC. Rigetti was notified of delisti Read more…

Alps Scientific Symposium Highlights AI’s Role in Tackling Science’s Biggest Challenges

October 4, 2024

ETH Zürich recently celebrated the launch of the AI-optimized “Alps” supercomputer with a scientific symposium focused on the future possibilities of scientific AI thanks to increased compute power and a flexible ar Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvidia GPUs). Recently, MLCommons introduced the results of its Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago this week emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever physical processor they want, without making code changes, Read more…

At 50, Foxconn Celebrates Graduation from Connectors to AI Supercomputing

October 8, 2024

Foxconn is celebrating its 50th birthday this year. It started by making connectors, then moved to systems, and now, a supercomputer. The company announced it w Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvi Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago this week emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whateve Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed t Read more…

How GenAI Will Impact Jobs In the Real World

September 30, 2024

There’s been a lot of fear, uncertainty, and doubt (FUD) about the potential for generative AI to take people’s jobs. The capability of large language model Read more…

IBM and NASA Launch Open-Source AI Model for Advanced Climate and Weather Research

September 25, 2024

IBM and NASA have developed a new AI foundation model for a wide range of climate and weather applications, with contributions from the Department of Energy’s Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Building the Quantum Economy — Chicago Style

September 24, 2024

Will there be regional winner in the global quantum economy sweepstakes? With visions of Silicon Valley’s iconic success in electronics and Boston/Cambridge� Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire