NCSA Researchers Use Blue Waters Supercomputer to Understand Earth’s Geomagnetism

September 26, 2019

September 26, 2019 — Deep in the center of the Earth is a fluid outer core that generates Earth’s magnetic field like a magnet with its two magnetic poles aligning closely to the geographic north and south poles. This alignment has been long used by mankind for navigation. But the magnetic field of the Earth plays a far more critical role in protecting the Earth’s habitats, by providing a strong magnetic shield to deflect solar wind, coronal mass ejection and solar energetic particles.

But the Earth’s core is not a conventional magnet, its magnetic field, called the geomagnetic field, changes substantially in both space and time, due to a turbulent dynamo action within the core. Thus it is very challenging to accurately predict geomagnetic variations in even several years in future. Dr. Nikolaos Pavlis, a scientist with the National Geospatial Intelligence Agency, and Dr. Weijia Kuang, a geophysicist in the Geodesy & Geophysics Lab at the NASA Goddard Space Flight Center in Greenbelt, Maryland, have been using the Blue Waters supercomputer at the National Center for Supercomputing Applications (NCSA) at the University of Illinois to learn more about geomagnetic variations and their underlying mechanisms, so that better forecasting models can be developed. Dr. Kuang recently answered some questions about this research via email.

Q: What can you tell about your research?

A: The collaboration that we are working on is in the area of geomagnetism, an important discipline of Earth science. The research goal of this collaboration is, in one sentence, utilizing geomagnetic observations and geodynamo models to make accurate forecasts of geomagnetic temporal variation on five-year to 20-year time scales. To reach this goal, we focus first on numerically understanding the forecast accuracy convergence with the ensemble size used for the ensemble Kalman filter type algorithm employed in our system.

There are a lot of technical details embedded in the above short description. Therefore I am writing a few more details and hope they are helpful. It is well known that Earth possesses a strong magnetic field (called the geomagnetic field) in much of its history (~ 4.5 billion years). This field is dominantly dipolar at the Earth’s surface and aligns approximately with the spin axis of the Earth, making the two poles pointing approximately to north and south, respectively. The fields are similar to the magnetic fields of a simple bar magnet. This north-south alignment has been used by mankind for navigation for several thousands of years.

Like many other geophysical quantities, the geomagnetic field changes in time and in space. Its changes in time are called “secular variation” (SV). Such changes are due to vigorous fluid motion, called convection, in the Earth’s fluid outer core which is approximately 3000 km below the surface.

The fundamental geodynamical process governing the core convection and the geomagnetic field is called “geodynamo.” At present, numerical modeling is the main tool to understand this dynamical process, its consequence on geomagnetic variation that is observable at the Earth’s surface, and its relevance to Earth’s evolution on geological time scales. Effort on accurate forecast of SV serves both the fundamental science and societal application needs.

Q. How are you using Blue Waters for this research?

A: We use Blue Waters for two main research tasks: (1) obtaining large ensemble of high-resolution geodynamo simulation solutions; and for (2) testing of forecast accuracy convergence with the ensemble size. These two can provide the knowledge on optimal ensemble sizes for geomagnetic forecast with given numerical resolutions and forecast accuracies. As you will find in the answers to the next two questions, the optimal ensemble size ensures cost-effective means for our research.

Q. How many cores are you using on Blue Waters? How long do your runs take?

A: Our project is computationally expensive. If we use 128 cores as the nominal usage for a single geodynamo simulation run, then 512 simultaneous runs will use 65,536 cores (or 2,048 nodes). However, due to research and technical reasons, we have tested so far only 1,024 cores (32 nodes).

Q. Would this research be possible without Blue Waters?

A. One main bottleneck of our research is the computing resource, in particular the CPU time. A typical geodynamo simulation requires ~ 1013 floating-point operations or “flops” with our current numerical resolution (100100100 in the three-dimensional space) and will require 1017 flops (100 petaflops) if higher resolutions are used for “Earth-like” parameters. Geomagnetic data assimilation can require three orders of magnitude more CPU time with ~1,000 ensemble members. If we look at it from the wall-clock time perspective, a single geodynamo simulation run can take up to two weeks (depending on numerical resolution and number of nodes used) on Blue Waters. Therefore, an ensemble of 512 simulation runs (which is expected to be typical) could last 10 years if they were executed sequentially. Blue Waters will enable us to have the entire ensemble runs executed simultaneously (parallel computation), thus allowing assimilation runs completed in the time frame comparable to that of a single run. Without Blue Waters (or any comparable computing facilities), we would have to scale back our ensemble size in order to complete all simulations within a reasonable time frame. This will certainly limit our ability to achieve meaningful research and application goals.

About NCSA

The National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign provides supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, University of Illinois faculty, staff, students, and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one third of the Fortune 50® for more than 30 years by bringing industry, researchers, and students together to solve grand challenges at rapid speed and scale.


Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire