NCSA Researchers Use XSEDE Resources to Accelerate Star Merger Simulations

July 1, 2020

July 1, 2020 — Collisions between neutron stars involve some of the most extreme physics in the Universe. The intense effects of vast matter density and magnetic fields make them computation-hungry to simulate. A team from the National Center for Supercomputing Applications (NCSA) used artificial intelligence on the advanced graphics-processing-unit (GPU) nodes of the XSEDE-allocated supercomputers Bridges at the Pittsburgh Supercomputing Center (PSC) as well as Stampede2 at the Texas Advanced Computing Center (TACC) to obtain a correction factor that will allow much faster, less detailed simulations to produce accurate predictions of these mergers.

Bizarre objects the size of a city but with more mass than our Sun, neutron stars spew magnetic fields a hundred thousand times stronger than an MRI medical scanner. A teaspoon of neutron-star matter weighs about a billion tons. It stands to reason that when these cosmic bodies smack together it will be dramatic. And nature does not disappoint on that count.

Scientists have directly detected two neutron-star mergers to date. These detections depended on two gravitational-wave-detector observatories. LIGO consists of two detectors, one in Hanford, Wash., and the other in Livingston, La. The European Virgo detector is in Santo Stefano a Macerata, Italy.

Scientists who analyze the data collected by LIGO and Virgo would like to see the highest-quality computer simulations of neutron star mergers. This allows them to identify what they should be looking for to better recognize and understand these events. But these simulations are slow and computationally expensive. Graduate student Shawn Rosofsky, working with advisor Eliu Huerta at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign, set out to speed up such simulations. To accomplish this, he turned to artificial intelligence using the advanced graphics processing units (GPUs) of the National Science Foundation-funded, XSEDE-allocated Bridges supercomputing platform at PSC.

Rosofsky set out to simulate the phenomenon of magnetohydrodynamic turbulence in the gasses surrounding neutron stars as they merge. This physical process is related to the turbulence in the atmosphere that produces clouds. But in neutron star mergers, it takes place under massive magnetic fields that make it difficult to simulate in a computer. The scale of the interactions is small—and so detailed—that the high resolutions required to resolve these effects in a single simulation could take years.

“Subgrid modeling [with AI] allows us to mimic the effects of high resolutions in lower-resolution simulations. The time scale of the simulations with high-enough resolutions without subgrid modeling is probably years rather than months. If we [can] obtain accurate results on a grid by artificially lowering the resolution by a factor of eight, we reduce the computational complexity by a factor of eight to the fourth power, or 4,096. XSEDE provided computational resources for running the simulations that we used as our training data with Stampede2. This work has attracted the attention of [our scientific community, enabling] us to push the envelope on innovative AI applications to accelerate multi-scale and multi-physics simulations,” says Shawn Rosofsky, NCSA.

Rosofsky wondered whether deep learning, a type of artificial intelligence (AI) that uses multiple layers of representation, could recognize features in the data that allow it to extract correct predictions faster than the brute force of ultra-high resolutions. His idea was to produce a correction factor using the AI to allow lower-resolution, faster computations on conventional, massively parallel supercomputers while still producing accurate results.

Deep learning starts with training, in which the AI analyzes data in which the “right answers” have been labeled by humans. This allows it to extract features from the data that humans might not have recognized but which allow it to predict the correct answers. Next the AI is tested on data without the right answers labeled, to ensure it’s still getting the answers right.

“It takes several months to obtain high-resolution simulations without subgrid scale modeling. Shawn’s idea was, ‘Forget about that, can we solve this problem with AI? Can we capture the physics of magnetohydrodynamics turbulence through data-driven AI modeling?’ … We had no idea whether we would be able to capture these complex physics … But the answer was, ‘Yes!'” says Eliu Huerta, NCSA.

Rosofsky designed his deep-learning AI to progress in steps. This allowed him to verify the results at each step and understand how the AI was obtaining its predictions. This is important in deep learning computation, which otherwise could produce a result that researchers might not fully understand and so can’t fully trust.

Rosofsky used the XSEDE-allocated Stampede2 supercomputer at the Texas Advanced Computing Center (TACC) to produce the data that is used to train, validate and test his neural network models. For the training and testing phases of the project, Bridges’ NVIDIA Tesla P100 GPUs, the most advanced available at the time, were ideally suited to the computations. Using Bridges, he was able to obtain a correction factor for the lower resolution simulations much more accurately than with the alternatives. The ability of AI to accurately compute subgrid scale effects with low resolution grids should allow the scientists to perform a large simulation in months rather than years. The NCSA team reported their results in the journal Physical Review D in April 2020.

“What we’re doing here is not just pushing the boundaries of AI. We’re providing a way for other users to optimally utilize their resources,” says Eliu Huerta, NCSA.

The AI computations on Bridges showed that the method would work better and faster than gradient models. They also present a roadmap for other researchers to use AI to speed other massive computations.

Future work by the group may include the even more advanced V100 GPU nodes of the XSEDE-allocated Bridges-AI system at PSC, or the upcoming Bridges-2 platform. Their next step will be to incorporate the AI’s correction factors into large-scale simulations of neutron-star mergers and further assess the accuracy of the AI and of the quicker simulations. Their hope is that the new simulations will demonstrate details in neutron-star mergers that can be identified in gravitational wave detectors. These could allow observatories to detect more events, as well as explain more about how these massive and strange cosmic events unfold.

You can read the NCSA team’s paper here.

About NCSA

The National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign provides supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, University of Illinois faculty, staff, students, and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one third of the Fortune 50 for more than 30 years by bringing industry, researchers, and students together to solve grand challenges at rapid speed and scale.


Source: National Center for Supercomputing Applications

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pegasus ‘Big Memory’ Supercomputer Now Deployed at the University of Tsukuba

March 25, 2023

In the bevy of news from Nvidia's GPU Technology Conference this week, another new system has come to light: Pegasus, which entered operations at the University of Tsukuba’s Center for Computational Sciences in January Read more…

EuroHPC Summit: Tackling Exascale, Energy, Industry & Sovereignty

March 24, 2023

As the 2023 EuroHPC Summit opened in Gothenburg on Monday, Herbert Zeisel – chair of EuroHPC’s Governing Board – commented that the undertaking had “left its teenage years behind.” Indeed, a sense of general ma Read more…

Is Fortran the Best Programming Language? Asking ChatGPT

March 23, 2023

I recently wrote about my experience with interviewing ChatGPT here. As promised, in this follow-on and conclusion of my interview, I focus on Fortran and other languages. All in good fun. I hope you enjoy the conclusion of my interview. After my programming language questions, I conclude with a few notes... Read more…

Nvidia Doubling Down on China Market in the Face of Tightened US Export Controls

March 23, 2023

Chipmakers are tightlipped on China activities following a U.S. crackdown on hardware exports to the country. But Nvidia remains unfazed, and is doubling down on China being an important country for its computing hardwar Read more…

Intel’s Sapphire Rapids Comes to Australia’s Gadi Supercomputer

March 22, 2023

Until the launch of Pawsey’s Setonix system last year, NCI’s Gadi system – launched in 2020 – was Australia’s most powerful publicly ranked supercomputer. Now, the system has received a major boost powered by I Read more…

AWS Solution Channel

Shutterstock_2206622211

Install optimized software with Spack configs for AWS ParallelCluster

With AWS ParallelCluster, you can choose a computing architecture that best matches your HPC application. But, HPC applications are complex. That means they can be challenging to get working well. Read more…

 

Get the latest on AI innovation at NVIDIA GTC

Join Microsoft at NVIDIA GTC, a free online global technology conference, March 20 – 23 to learn how organizations of any size can power AI innovation with purpose-built cloud infrastructure from Microsoft. Read more…

Nvidia Announces BlueField-3 GA, Oracle Cloud Is Early User

March 21, 2023

Nvidia today announced general availability for its BlueField-3 data processing unit (DPU) along with impressive early deployments including Oracle Cloud Infrastructure. First described in 2021 and now being delivered, B Read more…

Pegasus ‘Big Memory’ Supercomputer Now Deployed at the University of Tsukuba

March 25, 2023

In the bevy of news from Nvidia's GPU Technology Conference this week, another new system has come to light: Pegasus, which entered operations at the University Read more…

EuroHPC Summit: Tackling Exascale, Energy, Industry & Sovereignty

March 24, 2023

As the 2023 EuroHPC Summit opened in Gothenburg on Monday, Herbert Zeisel – chair of EuroHPC’s Governing Board – commented that the undertaking had “lef Read more…

Nvidia Doubling Down on China Market in the Face of Tightened US Export Controls

March 23, 2023

Chipmakers are tightlipped on China activities following a U.S. crackdown on hardware exports to the country. But Nvidia remains unfazed, and is doubling down o Read more…

Nvidia Announces BlueField-3 GA, Oracle Cloud Is Early User

March 21, 2023

Nvidia today announced general availability for its BlueField-3 data processing unit (DPU) along with impressive early deployments including Oracle Cloud Infras Read more…

Nvidia Announces ‘Tokyo-1’ Generative AI Supercomputer Amid Gradual H100 Rollout

March 21, 2023

Nvidia’s Hopper-generation H100 GPU is continuing its slow march toward “current-generation.” After Nvidia announced that the H100 was in “full producti Read more…

DGX Cloud Is Here: Nvidia’s AI Factory Services Start at $37,000

March 21, 2023

If you are a die-hard Nvidia loyalist, be ready to pay a fortune to use its AI factories in the cloud. Renting the GPU company's DGX Cloud, which is an all-inclusive AI supercomputer in the cloud, starts at $36,999 per instance for a month. The rental includes access to a cloud computer with eight Nvidia H100 or A100 GPUs and 640GB... Read more…

Quantum Bits: IBM-Cleveland Clinic Launch; D-Wave Adds Solver; DOE/AWS Offer QICK

March 20, 2023

IBM today launched the first installation of an IBM Quantum System One at a collaborator site in the U.S. – this one is at the Cleveland Clinic where IBM’s Read more…

SCA23: Pawsey’s Mark Stickells on Sustainable Australian Supercomputing

March 17, 2023

“While the need for supercomputing is great, we have, in my view, reached a tipping point,” said Mark Stickells, executive director of Australia’s Pawsey Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

SC22 Booth Videos

AMD @ SC22
Altair @ SC22
AWS @ SC22
Ayar Labs @ SC22
CoolIT @ SC22
Cornelis Networks @ SC22
DDN @ SC22
Dell Technologies @ SC22
HPE @ SC22
Intel @ SC22
Intelligent Light @ SC22
Lancium @ SC22
Lenovo @ SC22
Microsoft and NVIDIA @ SC22
One Stop Systems @ SC22
Penguin Solutions @ SC22
QCT @ SC22
Supermicro @ SC22
Tuxera @ SC22
Tyan Computer @ SC22
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire