NCSA Researchers Use XSEDE Resources to Accelerate Star Merger Simulations

July 1, 2020

July 1, 2020 — Collisions between neutron stars involve some of the most extreme physics in the Universe. The intense effects of vast matter density and magnetic fields make them computation-hungry to simulate. A team from the National Center for Supercomputing Applications (NCSA) used artificial intelligence on the advanced graphics-processing-unit (GPU) nodes of the XSEDE-allocated supercomputers Bridges at the Pittsburgh Supercomputing Center (PSC) as well as Stampede2 at the Texas Advanced Computing Center (TACC) to obtain a correction factor that will allow much faster, less detailed simulations to produce accurate predictions of these mergers.

Bizarre objects the size of a city but with more mass than our Sun, neutron stars spew magnetic fields a hundred thousand times stronger than an MRI medical scanner. A teaspoon of neutron-star matter weighs about a billion tons. It stands to reason that when these cosmic bodies smack together it will be dramatic. And nature does not disappoint on that count.

Scientists have directly detected two neutron-star mergers to date. These detections depended on two gravitational-wave-detector observatories. LIGO consists of two detectors, one in Hanford, Wash., and the other in Livingston, La. The European Virgo detector is in Santo Stefano a Macerata, Italy.

Scientists who analyze the data collected by LIGO and Virgo would like to see the highest-quality computer simulations of neutron star mergers. This allows them to identify what they should be looking for to better recognize and understand these events. But these simulations are slow and computationally expensive. Graduate student Shawn Rosofsky, working with advisor Eliu Huerta at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign, set out to speed up such simulations. To accomplish this, he turned to artificial intelligence using the advanced graphics processing units (GPUs) of the National Science Foundation-funded, XSEDE-allocated Bridges supercomputing platform at PSC.

Rosofsky set out to simulate the phenomenon of magnetohydrodynamic turbulence in the gasses surrounding neutron stars as they merge. This physical process is related to the turbulence in the atmosphere that produces clouds. But in neutron star mergers, it takes place under massive magnetic fields that make it difficult to simulate in a computer. The scale of the interactions is small—and so detailed—that the high resolutions required to resolve these effects in a single simulation could take years.

“Subgrid modeling [with AI] allows us to mimic the effects of high resolutions in lower-resolution simulations. The time scale of the simulations with high-enough resolutions without subgrid modeling is probably years rather than months. If we [can] obtain accurate results on a grid by artificially lowering the resolution by a factor of eight, we reduce the computational complexity by a factor of eight to the fourth power, or 4,096. XSEDE provided computational resources for running the simulations that we used as our training data with Stampede2. This work has attracted the attention of [our scientific community, enabling] us to push the envelope on innovative AI applications to accelerate multi-scale and multi-physics simulations,” says Shawn Rosofsky, NCSA.

Rosofsky wondered whether deep learning, a type of artificial intelligence (AI) that uses multiple layers of representation, could recognize features in the data that allow it to extract correct predictions faster than the brute force of ultra-high resolutions. His idea was to produce a correction factor using the AI to allow lower-resolution, faster computations on conventional, massively parallel supercomputers while still producing accurate results.

Deep learning starts with training, in which the AI analyzes data in which the “right answers” have been labeled by humans. This allows it to extract features from the data that humans might not have recognized but which allow it to predict the correct answers. Next the AI is tested on data without the right answers labeled, to ensure it’s still getting the answers right.

“It takes several months to obtain high-resolution simulations without subgrid scale modeling. Shawn’s idea was, ‘Forget about that, can we solve this problem with AI? Can we capture the physics of magnetohydrodynamics turbulence through data-driven AI modeling?’ … We had no idea whether we would be able to capture these complex physics … But the answer was, ‘Yes!'” says Eliu Huerta, NCSA.

Rosofsky designed his deep-learning AI to progress in steps. This allowed him to verify the results at each step and understand how the AI was obtaining its predictions. This is important in deep learning computation, which otherwise could produce a result that researchers might not fully understand and so can’t fully trust.

Rosofsky used the XSEDE-allocated Stampede2 supercomputer at the Texas Advanced Computing Center (TACC) to produce the data that is used to train, validate and test his neural network models. For the training and testing phases of the project, Bridges’ NVIDIA Tesla P100 GPUs, the most advanced available at the time, were ideally suited to the computations. Using Bridges, he was able to obtain a correction factor for the lower resolution simulations much more accurately than with the alternatives. The ability of AI to accurately compute subgrid scale effects with low resolution grids should allow the scientists to perform a large simulation in months rather than years. The NCSA team reported their results in the journal Physical Review D in April 2020.

“What we’re doing here is not just pushing the boundaries of AI. We’re providing a way for other users to optimally utilize their resources,” says Eliu Huerta, NCSA.

The AI computations on Bridges showed that the method would work better and faster than gradient models. They also present a roadmap for other researchers to use AI to speed other massive computations.

Future work by the group may include the even more advanced V100 GPU nodes of the XSEDE-allocated Bridges-AI system at PSC, or the upcoming Bridges-2 platform. Their next step will be to incorporate the AI’s correction factors into large-scale simulations of neutron-star mergers and further assess the accuracy of the AI and of the quicker simulations. Their hope is that the new simulations will demonstrate details in neutron-star mergers that can be identified in gravitational wave detectors. These could allow observatories to detect more events, as well as explain more about how these massive and strange cosmic events unfold.

You can read the NCSA team’s paper here.

About NCSA

The National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign provides supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, University of Illinois faculty, staff, students, and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one third of the Fortune 50 for more than 30 years by bringing industry, researchers, and students together to solve grand challenges at rapid speed and scale.


Source: National Center for Supercomputing Applications

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Leading Solution Providers

Contributors

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This