NCSA Welcomes 2019-2020 Faculty Fellows

May 21, 2019

May 21, 2019 — The National Center for Supercomputing Applications (NCSA) has named seven new Faculty Fellows for the 2019-2020 academic school year. The NCSA Faculty Fellowship is a competitive program for faculty and researchers at the University of Illinois at Urbana-Champaign which provides seed funding for new collaborations that include NCSA staff as integral contributors to the project.

THE BIG PICTURE: MEDIA, CAPITAL AND NETWORKS OF INFLUENCE

Faculty Fellow: Rini Mehta (Dept. of Comparative and World Literature, College of Liberal Arts & Sciences)
NCSA Collaborators: Kalina Borkiewicz, Sandeep Puthanveetil Satheesan, Luigi Marini

Abstract: The Big Picture proposes to build a map of the global network of media, corporate power, and political influence that was engendered by globalization and which in turn continues to shape our world in the 21st century. The world that we inhabit today is caught in the interstices of political, economic, and cultural forces that operate in between fault lines of nations, regions, and ideologies. Visual technologies and arts are as much complicit in manufacturing and manipulating history as they are involved in disseminating history as it unfolds. Our project will connect realpolitik and representation to capture a media history of the current times, in a global context. Using methods gleaned from the ontology-based models such as FOAF (friend of a friend), The Big Picture will bring together media studies, history, statistics, data curation, and advanced visualization to produce a dynamic interface accessible through a website. This project will partner with the PI’s Global Film History from the Edges project that has been granted $150,000 by the University of Illinois Presidential Initiative for the Advancement of Humanities and the Arts.

PREDICTING INTERNATIONAL FOOD SECURITY CRISES: A DATA-DRIVEN APPROACH

Faculty Fellow: Hope Michelson (Dept. of Agricultural and Consumer Economics, College of Agricultural, Consumer, and Environmental Sciences)
NCSA Collaborators: Liudmila Mainzer, Aiman Soliman

Abstract: In food crises, faster and more accurate evaluation and response can save lives and resources. Methods currently in use to predict such crises have limitations that delay and impede humanitarian response: they are not model-driven, and they do not engage the full scope of available data. Because government policy-makers and Non-Governmental Organizations often fail to recognize specific food insecure populations, scarce resources to mitigate hunger can arrive too late and in the wrong places. In many parts of the world, crises of this sort are on the rise, requiring improved methods to identify their scale and scope. Developing and deploying an effective early warning system is urgent, given the expectation that climate shocks disrupting agricultural production and market functioning will increase in frequency and severity in coming decades.

We propose to develop and test a new model-driven method for predicting food crises across the world. Dr. Michelson’s previous work (Lentz, Michelson, Baylis and Zhou, 2018) demonstrates that we can improve prediction of food security crises by exploiting publicly-available high-frequency, spatially-resolved data. The proposed collaboration with NCSA’s Data Analytics Group and the NCSA Genomics Group will take this research to the next level: developing new data sources for predicting and applying state of the art machine learning techniques to the prediction problem.

DISCOVERY OF ADVANCED NANODIELECTRICS THROUGH AI-ACCELERATED MULTISCALE SIMULATION FROM FIRST PRINCIPLES

Faculty Fellow: Yumeng Li (Dept. of Industrial and Enterprise Systems Engineering, The Grainger College of Engineering)
NCSA Collaborators: Erman Guleryuz

Abstract: The research objective of this proposal is to create a new generation artificial intelligence-enabled multiscale simulation framework and its enabling techniques, which would directly root in first principles theory, for a comprehensive understanding of the cross-scale multiphysics phenomena in dielectric polymer nanocomposites. In addition to features like easy processing and light weight, polymer nanocomposites demonstrate a great potential in realizing highly enhanced combined properties to meet the needs of advanced dielectrics in applications from energy storage to power delivery. However, the current lack of understanding in fundamental mechanisms leading to the property enhancement necessitates modeling of complex phenomena (ranging from nanoscale to macroscale) using a high-performance multiscale simulation framework. The new multiscale simulation framework employs artificial intelligence (AI) for an effective integration of first principle calculations, physics-based atomistic simulations and data-driven predictive analytics, thereby concurrently leveraging high accuracy of first principles calculations and high efficiency in AI enabled predictive data analytics. Built upon the PI’s research experience on both multiscale simulation and polymer nanocomposites, this proposal will focus on four research thrusts to address grand challenges in developing the new framework: 1) developing machine learning potentials for the interface based on high-throughput first principles calculations, 2) characterizing nanoscale local interfacial electro-mechanical-thermal properties using AI-accelerated atomistic simulations, 3) predicting macroscale electro-mechanical-thermal properties considering the interface effects, and 4) model validation of the proposed multiscale simulation framework.

ENABLING LONG-TERM REUSE OF EXPERIMENTAL AND COMPUTATIONAL DATASETS ON PROTEIN DYNAMICS

Faculty Fellow: Diwakar Shukla (Dept. of Chemical and Biomolecular Engineering, The Grainger College of Engineering)
NCSA Collaborator: Luigi Marini

Abstract: Modern molecular simulations of proteins on high-performance computing resources such as Blue Waters generate extensive atomistic-detailed information about protein dynamics, which could be leveraged for obtaining insights about molecular origin of human diseases, design of therapeutics, bioengineering of plants. However, the key challenge is to convert the terabytes of biomolecular dynamics data generated on supercomputers into a format accessible to an experimental researcher. In this proposal, we present an approach that not only generates suggestions for optimal experiments based on simulation data (e.g. for validation of simulations) but also integrates the existing experimental and simulation information to generate comprehensive models of protein dynamics that are missing from the current literature. We have developed algorithms that provide an approach that maximizes information gain for the design of experiments given simulation data. We propose to work with NCSA collaborators to implement a cloud-based platform and a user interface for this proposed service. NCSA will benefit from working on this project by gaining more expertise in applying cyberinfrastructure in the realm of biomolecular dynamics. The biggest impact of the proposed study is that it provides an accessible tool for experimental researchers to help harness the knowledge hidden in the big protein simulation datasets generated using Blue Waters and other high performance computing resources. This work will have a transformative impact on how protein science is conducted by experimental and computational research groups.

HIGH-PERFORMANCE, MULTI-OBJECTIVE, AND MULTI-PHYSICS DESIGN OPTIMIZATION OF NEXT-GENERATION, PATIENT-SPECIFIC IMPLANT SCAFFOLD AT SCALE

Faculty Fellow: X. Shelly Zhang (Dept. of Civil and Environmental Engineering, The Grainger College of Engineering)
NCSA Collaborator: Erman Guleryuz

Abstract: With recent advances in tissue engineering, the design and fabrication of implant scaffolds have become emerging areas of research, as the traditional implants fail to fulfill required functionalities for specific patients. While topology optimization offers a promising method for scaffold design, existing studies have limited capabilities of addressing multiple design scenarios and fine control of the porosities to achieve highest performances. To address these challenges, the proposed research aims to create a high-performance, multi-physics, and multi-objective topology optimization framework for the design of next-generation patient-specific scaffolds implant scaffold with enhanced multifunctionality. The proposed formulation addresses both mechanical and mass transport design requirements using multi-objective formulations and simultaneously controls the location, size, and shape of porosities through local constraints. To successfully realize the high complexity of the scaffold structures, the proposed research requires large problem size (hundreds of millions of degrees of freedom) and 3D multi-physics simulations, which must rely on massively parallel supercomputers. The PI will work closely with NCSA to develop highly scalable algorithms and high-performance computational frameworks for efficient optimization and to utilize the large-scale supercomputers in order to achieve ultra-high-resolution designs.

The proposed work will be built upon an open-source parallel code based on PETSc suite of libraries. Through a proof-of-concept benchmark on Blue Waters, the workflow was successfully tested and showed great scalability. The supercomputing infrastructure and domain experts at NCSA will provide essential support for the success of this project. The state-of-the-art methods created in this research will carry a great potential to contribute to the synergy between NCSA and the members of NCSA’s Industry Program from the life sciences sector. With the optimized structures developed through this project, patients implanted with the optimized scaffolds would be benefited from better functionality, better clinical results, and ultimately contribute to better health and living conditions.

THE WAR ON PROFESSIONAL EXPERTISE: THE GLOBAL SPREAD OF ONLINE MYTHS ABOUT MEDICINE AND HEALTH

Faculty Fellows: Kevin Leicht (Dept. of Sociology, College of Liberal Arts & Sciences), Brant Houston (Dept. of Journalism, College of Media)
NCSA Collaborator: Loretta Auvil

Abstract: The spread of dubious or downright false information (sometimes referred to as “fake news”) is a growing social, cultural and scientific dilemma, and the situation is especially troubling when it comes to information about medicine and public health. The most recent manifestation of the real world consequences of dubious medical information is the spread of measles and its link to anti-vaccination websites and memes. But that is only the most recent manifestation—others include the peddling of conspiracy theories and fake cancer cures, organized misinformation about stem cell research, and the spread of dubious claims about alternative medicines. There is further evidence that some of this dubious information is deliberately produced for financial gain or to fuel cultural discord.

The purpose of this project is to examine the routes through which medical misinformation spreads in the news and social media. The research will examine medical misinformation in four areas; (1) vaccinations, (2) cancer cures, (3) the spread of the Ebola virus, and (4) the safety of contraception. Misinformation is defined as information that is publicly available and disseminated that is not supported or actively contrary to established medical advice. For this fellowship, we will use the considerable news resources of the Cline Center archive and then use the resources and expertise of NCSA to (1) explore methods for searching and applying models to identify relevant new articles on our selected healthcare topics, (2) develop a model for identifying dubious and false information in these articles, (3) rendering the data suitable for quantitative analysis, and (4) aiding the principal investigators in conducting the analysis. The pilot research from this fellowship will form the basis for a much larger research grant to be submitted to the Knight Foundation or the National Institutes of Health.

ABOUT NCSA

The National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign provides supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, University of Illinois faculty, staff, students, and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one third of the Fortune 50 for more than 30 years by bringing industry, researchers, and students together to solve grand challenges at rapid speed and scale.


Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be natively integrated into four of the world's most advanced qu Read more…

Computing-Driven Medicine: Sleeping Better with HPC

September 10, 2024

As a senior undergraduate student at Fisk University in Nashville, Tenn., Ifrah Khurram's calculus professor, Dr. Sanjukta Hota, encouraged her to apply for the Sustainable Research Pathways Program (SRP). SRP was create Read more…

LLNL Engineers Harness Machine Learning to Unlock New Possibilities in Lattice Structures

September 9, 2024

Lattice structures, characterized by their complex patterns and hierarchical designs, offer immense potential across various industries, including automotive, aerospace, and biomedical engineering. With their outstand Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, integrated, and secured data. Now scientists working at univer Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently posted the following on X/Twitter: "This weekend, the @xA Read more…

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with performance benchmarks. In the first paper, Understanding Data Mov Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be n Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, in Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Shutterstock 1897494979

What’s New with Chapel? Nine Questions for the Development Team

September 4, 2024

HPC news headlines often highlight the latest hardware speeds and feeds. While advances on the hardware front are important, improving the ability to write soft Read more…

Critics Slam Government on Compute Speeds in Regulations

September 3, 2024

Critics are accusing the U.S. and state governments of overreaching by including limits on compute speeds in regulations and laws, which they claim will limit i Read more…

Shutterstock 1622080153

AWS Perfects Cloud Service for Supercomputing Customers

August 29, 2024

Amazon's AWS believes it has finally created a cloud service that will break through with HPC and supercomputing customers. The cloud provider a Read more…

HPC Debrief: James Walker CEO of NANO Nuclear Energy on Powering Datacenters

August 27, 2024

Welcome to The HPC Debrief where we interview industry leaders that are shaping the future of HPC. As the growth of AI continues, finding power for data centers Read more…

CEO Q&A: Acceleration is Quantinuum’s New Mantra for Success

August 27, 2024

At the Quantum World Congress (QWC) in mid-September, trapped ion quantum computing pioneer Quantinuum will unveil more about its expanding roadmap. Its current Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Leading Solution Providers

Contributors

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Department of Justice Begins Antitrust Probe into Nvidia

August 9, 2024

After months of skyrocketing stock prices and unhinged optimism, Nvidia has run into a few snags – a  design flaw in one of its new chips and an antitrust pr Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire