NEC and Tohoku University Succeed in AI-Based New Material Development

February 12, 2018

TOKYO, Feb 12, 2018 — NEC Corporation and Tohoku University applied new technologies developed by NEC, which use AI to predict the characteristics of unknown materials, to the joint development of cutting edge thermoelectric conversion technology known as a thermoelectric (TE) device(1) using spin current(2), and achieved 100 times better thermoelectric conversion efficiency over the course of approximately 1 year.

These new technologies consist of a group of AI technologies for material development which incorporate the various types of knowledge required for material development, and technology for the batch acquisition of the large amounts of material data that AI needs to learn material properties.

The AI technologies for material development use heterogeneous mixture learning technology(3) and a number of machine learning technologies specific to material development(4), (5) independently developed by NEC. These technologies were combined with technology for the batch acquisition of material data, which enabled the acquisition and evaluation of data regarding more than 1,000 types of materials with different compositions data and resulted in much more accurate AI learning.

NEC and Tohoku University applied a development technique combining these technologies to the development of a spin-current thermoelectric conversion device, and demonstrated that it is possible to enhance thermoelectric conversion efficiency by designing an actual material in line with AI-derived new material design guidelines.

In the future, NEC and Tohoku University will develop more sophisticated AI-based technologies for predicting the physical properties of new materials and conduct further research and development aimed at the practical application of spin-current thermoelectric conversion device technology and the realization of IoT devices that continue working for years without a power supply.

Background

In recent years, cases in which machine learning technologies and analysis technologies based on informatics are applied to large amounts of data to extract hidden information and predict future trends are becoming increasingly common in a wide range of fields.

In the realm of natural sciences, there has long been research into the use of informatics in the search for new substances and materials and, especially in the biomedical, pharmaceutical and chemical fields, advances in so-called combinatorial technologies(6), which involve acquiring data through comprehensive investigation of search objects, have resulted in the extensive use of informatics in projects such as the human genome project.

Similarly, in fields that deal with solid state materials such as metals, semiconductors and oxides, techniques that make full use of the advantages of machine learning and analysis technologies from the viewpoint of shortening the duration of research and development and reducing costs are attracting attention in recent years as materials informatics (MI). Harnessing knowledge gained over many years of basic research in the natural sciences field using informatics, NEC began conducting research into analysis technologies specifically for solid state materials data more than five years ago. However, it was challenging because it took time and effort to produce and evaluate data in this field, making it difficult to obtain enough groups of data of sufficient quality required for the application of MI.

The initiatives of NEC and Tohoku University have now resulted in NEC’s independent development of AI technologies for material development that effectively analyze material data, and technology for the batch acquisition of data about many different types of solid state materials. NEC and Tohoku University have also applied a material development cycle incorporating these two types of technologies to the development of thermoelectric conversion materials using spin currents and considerably shortened the duration of material development.

Features of the new technologies

1. Development of AI technologies for material development
A material development cycle using MI handles an enormous amount of material data and it is, therefore, inevitable that the data processing and classification and the data evaluation that was previously painstakingly performed by specialist researchers can no longer keep up. Also, in the development process, the amount of material candidates is generally greater than the amount of data that can be obtained, and selection of the process for searching these candidates needs to be performed more efficiently than in the past. To address these issues, NEC developed the following AI technologies for material development which correspond to the various characteristics of actual material data.

  • AI technology for combinatorial data analysis: Machine learning technology for processing and classifying large amounts of data acquired using combinatorial techniques at high speed. Knowledge of physics/materials science is partially incorporated into existing machine learning algorithms to realize high precision, high speed data processing(4).
  • AI technology for physical property modeling: Machine learning technology for evaluating large amounts of material data. Inductive modeling of physical properties using heterogeneous mixture learning with high readability (white-box) and high precision prediction enables researchers and AI to increase their understanding of data in concert. This technology plays a very important part in the extraction of the material parameter candidates that characterize the physical properties model.(3)
  • AI technology for materials screening: Machine learning technology for efficiently searching for the target material from among a large amount of materials candidates. On the selection (screening) of materials with reference to the material parameters that characterize the physical properties model, the technology performs high-speed searches of ultra-multi-dimensional systems, which was difficult with existing Bayesian Optimization(7). This is achieved through the application of branch-and-bound type algorithm that predict moves into the future based on Combinatorial Game Theory.(5)

2. Establishment of combinatorial data acquisition platform (batch evaluation and acquisition of large amounts of data) 

NEC and Tohoku University developed a combinatorial data acquisition platform that combines theoretical calculation data acquired through material property simulation with test data acquired through proprietary thin film materials preparation/characteristics evaluation technologies, to create enough data groups of sufficient quality.

In one example of composition-spread materials shown in the photograph, thin film material with more than 1,000 different types of composition was produced on a single substrate in one film preparation process. Electrode pads, etc. according to the purpose of measurement are patterned on the evaluation sample and experimental data can be acquired efficiently through an automatic evaluation system, which was also developed independently. The quality and amount of data is vastly improved compared to previous techniques used to produce and evaluate a single material in one experiment.

In the material physical property simulation, various calculation techniques are used according to the purpose, for example, first-principles calculations, and theoretical calculations are performed to ensure correspondence with experimental data. Various types of physical property parameter group, ranging from general physical properties such as electric resistance and thermal conductivity to detailed physical properties relating to electronic state are acquired as theoretical calculation data.

3. Application to the development of a spin-current thermoelectric conversion device

A spin-current thermoelectric conversion device recovers waste heat that exists widely in society by converting it into electricity and will, therefore, enable the countless IoT devices that will be installed in the future to continue working for many years even without a power source.

The main issue with a spin-current thermoelectric conversion device is that the thermoelectric conversion efficiency performance has still not reached a practically applicable level. When the recently established material development cycle combining a combinatorial data acquisition platform and AI technologies for materials development was applied on a trial basis to the search for a new platinum (Pt) alloy, this led to various discoveries, including that the Pt alloy was a magnet and the importance of the Pt itself contained in the alloy being spin polarized.

Evaluation of the characteristics of a new alloy CoPtN that is designed to enhance spin polarization of Pt according to AI-derived knowledge confirmed that thermoelectric conversion efficiency around 100 times higher than that of previous Pt alloy was obtained. This level was also much closer to the output level of commercially available thermoelectric conversion elements that use semiconductors. It was also demonstrated that it was possible to significantly shorten development time to around 1 year.

“We will continue to further expand the search for materials using AI in the future, focusing on further improvement in the thermoelectric conversion efficiency of spin-current thermoelectric conversion elements and the development of new low-cost materials,” said Eiji Saitoh, Professor, Tohoku University.

“We aim for the early pranctical application of spin-current thermoelectric conversion elements as power source technology for IoT devices that will continue to work for years without a battery or other power source and as low cost, high performance electronic cooling technology,” said Soichi Tsumura, General Manager, NEC IoT Devices Research Laboratories.

These results were achieved as part of the Exploratory Research for Advanced Technology (ERATO) “SAITOH Spin Quantum Rectification Project” (Research Director: Eiji Saitoh, Professor, Tohoku University; Research Period: 2014 – 2020 fiscal year) of the Japan Science and Technology Agency (JST) and the Promoting Individual Research to Nurture the Seeds of Future Innovation and Organizing Unique, Innovative Network (PRESTO) “Development of Basic Technologies for Advanced Materials Informatics through Comprehensive Integration among Theoretical, Experimental, Computational and Data-Centric Sciences” (Researcher: Yuma Iwasaki, NEC Corporation; Research Period: 2017 -2021 fiscal year) of JST.

NEC plans to exhibit and showcase these research findings at nano tech 2018 – The 17th International Nanotechnology Exhibition & Conference from February 14 (Wed)-16 (Fri), 2018 at Tokyo Big Sight, Japan.

(1) A thermoelectric device is a device which converts thermal energy directly into electricity and vice versa.
(2) The spin current is a flow of a magnetic property of an electron, so-called “spin.”
(3) http://jpn.nec.com/ai/analyze/pattern.html
(4) “Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries” Y. Iwasaki et al., nature partner journal Computational Materials 3, 4 (2017).
(5) Proceedings of the 78th JSAP Autumn Meeting 5p-C18-4 (2017) R. Sawada et al.
(6) The combinatorial approach involves comprehensively investigating predicted combinations to gain an understanding of the overall trend of search candidates.
(7) Bayesian Optimization algorithms are stochastic optimization techniques that are used to search for the maximum or minimum value based on observed facts.

About NEC Corporation

NEC Corporation is a leader in the integration of IT and network technologies that benefit businesses and people around the world. By providing a combination of products and solutions that cross utilize the company’s experience and global resources, NEC’s advanced technologies meet the complex and ever-changing needs of its customers. NEC brings more than 100 years of expertise in technological innovation to empower people, businesses and society. For more information, visit NEC at http://www.nec.com.


Source: NEC Corporation

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Francisco, one would be tempted to dismiss its claims of inventing Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been emerging from stealth over the last year and a half, is unveili Read more…

By Tiffany Trader

Scientists Conduct First Quantum Simulation of Atomic Nucleus

May 23, 2018

OAK RIDGE, Tenn., May 23, 2018—Scientists at the Department of Energy’s Oak Ridge National Laboratory are the first to successfully simulate an atomic nucleus using a quantum computer. The results, published in Ph Read more…

By Rachel Harken, ORNL

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

First Xeon-FPGA Integration Launched by Intel

May 22, 2018

Ever since Intel’s acquisition of FPGA specialist Altera in 2015 for $16.7 billion, it’s been widely acknowledged that some day, Intel would release a processor that integrates its mainstream Xeon CPU server chip wit Read more…

By Doug Black

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Silicon Startup Raises ‘Prodigy’ for Hyperscale/AI Workloads

May 23, 2018

There's another silicon startup coming onto the HPC/hyperscale scene with some intriguing and bold claims. Silicon Valley-based Tachyum Inc., which has been eme Read more…

By Tiffany Trader

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This