NEC and Tohoku University Succeed in AI-Based New Material Development

February 12, 2018

TOKYO, Feb 12, 2018 — NEC Corporation and Tohoku University applied new technologies developed by NEC, which use AI to predict the characteristics of unknown materials, to the joint development of cutting edge thermoelectric conversion technology known as a thermoelectric (TE) device(1) using spin current(2), and achieved 100 times better thermoelectric conversion efficiency over the course of approximately 1 year.

These new technologies consist of a group of AI technologies for material development which incorporate the various types of knowledge required for material development, and technology for the batch acquisition of the large amounts of material data that AI needs to learn material properties.

The AI technologies for material development use heterogeneous mixture learning technology(3) and a number of machine learning technologies specific to material development(4), (5) independently developed by NEC. These technologies were combined with technology for the batch acquisition of material data, which enabled the acquisition and evaluation of data regarding more than 1,000 types of materials with different compositions data and resulted in much more accurate AI learning.

NEC and Tohoku University applied a development technique combining these technologies to the development of a spin-current thermoelectric conversion device, and demonstrated that it is possible to enhance thermoelectric conversion efficiency by designing an actual material in line with AI-derived new material design guidelines.

In the future, NEC and Tohoku University will develop more sophisticated AI-based technologies for predicting the physical properties of new materials and conduct further research and development aimed at the practical application of spin-current thermoelectric conversion device technology and the realization of IoT devices that continue working for years without a power supply.

Background

In recent years, cases in which machine learning technologies and analysis technologies based on informatics are applied to large amounts of data to extract hidden information and predict future trends are becoming increasingly common in a wide range of fields.

In the realm of natural sciences, there has long been research into the use of informatics in the search for new substances and materials and, especially in the biomedical, pharmaceutical and chemical fields, advances in so-called combinatorial technologies(6), which involve acquiring data through comprehensive investigation of search objects, have resulted in the extensive use of informatics in projects such as the human genome project.

Similarly, in fields that deal with solid state materials such as metals, semiconductors and oxides, techniques that make full use of the advantages of machine learning and analysis technologies from the viewpoint of shortening the duration of research and development and reducing costs are attracting attention in recent years as materials informatics (MI). Harnessing knowledge gained over many years of basic research in the natural sciences field using informatics, NEC began conducting research into analysis technologies specifically for solid state materials data more than five years ago. However, it was challenging because it took time and effort to produce and evaluate data in this field, making it difficult to obtain enough groups of data of sufficient quality required for the application of MI.

The initiatives of NEC and Tohoku University have now resulted in NEC’s independent development of AI technologies for material development that effectively analyze material data, and technology for the batch acquisition of data about many different types of solid state materials. NEC and Tohoku University have also applied a material development cycle incorporating these two types of technologies to the development of thermoelectric conversion materials using spin currents and considerably shortened the duration of material development.

Features of the new technologies

1. Development of AI technologies for material development
A material development cycle using MI handles an enormous amount of material data and it is, therefore, inevitable that the data processing and classification and the data evaluation that was previously painstakingly performed by specialist researchers can no longer keep up. Also, in the development process, the amount of material candidates is generally greater than the amount of data that can be obtained, and selection of the process for searching these candidates needs to be performed more efficiently than in the past. To address these issues, NEC developed the following AI technologies for material development which correspond to the various characteristics of actual material data.

  • AI technology for combinatorial data analysis: Machine learning technology for processing and classifying large amounts of data acquired using combinatorial techniques at high speed. Knowledge of physics/materials science is partially incorporated into existing machine learning algorithms to realize high precision, high speed data processing(4).
  • AI technology for physical property modeling: Machine learning technology for evaluating large amounts of material data. Inductive modeling of physical properties using heterogeneous mixture learning with high readability (white-box) and high precision prediction enables researchers and AI to increase their understanding of data in concert. This technology plays a very important part in the extraction of the material parameter candidates that characterize the physical properties model.(3)
  • AI technology for materials screening: Machine learning technology for efficiently searching for the target material from among a large amount of materials candidates. On the selection (screening) of materials with reference to the material parameters that characterize the physical properties model, the technology performs high-speed searches of ultra-multi-dimensional systems, which was difficult with existing Bayesian Optimization(7). This is achieved through the application of branch-and-bound type algorithm that predict moves into the future based on Combinatorial Game Theory.(5)

2. Establishment of combinatorial data acquisition platform (batch evaluation and acquisition of large amounts of data) 

NEC and Tohoku University developed a combinatorial data acquisition platform that combines theoretical calculation data acquired through material property simulation with test data acquired through proprietary thin film materials preparation/characteristics evaluation technologies, to create enough data groups of sufficient quality.

In one example of composition-spread materials shown in the photograph, thin film material with more than 1,000 different types of composition was produced on a single substrate in one film preparation process. Electrode pads, etc. according to the purpose of measurement are patterned on the evaluation sample and experimental data can be acquired efficiently through an automatic evaluation system, which was also developed independently. The quality and amount of data is vastly improved compared to previous techniques used to produce and evaluate a single material in one experiment.

In the material physical property simulation, various calculation techniques are used according to the purpose, for example, first-principles calculations, and theoretical calculations are performed to ensure correspondence with experimental data. Various types of physical property parameter group, ranging from general physical properties such as electric resistance and thermal conductivity to detailed physical properties relating to electronic state are acquired as theoretical calculation data.

3. Application to the development of a spin-current thermoelectric conversion device

A spin-current thermoelectric conversion device recovers waste heat that exists widely in society by converting it into electricity and will, therefore, enable the countless IoT devices that will be installed in the future to continue working for many years even without a power source.

The main issue with a spin-current thermoelectric conversion device is that the thermoelectric conversion efficiency performance has still not reached a practically applicable level. When the recently established material development cycle combining a combinatorial data acquisition platform and AI technologies for materials development was applied on a trial basis to the search for a new platinum (Pt) alloy, this led to various discoveries, including that the Pt alloy was a magnet and the importance of the Pt itself contained in the alloy being spin polarized.

Evaluation of the characteristics of a new alloy CoPtN that is designed to enhance spin polarization of Pt according to AI-derived knowledge confirmed that thermoelectric conversion efficiency around 100 times higher than that of previous Pt alloy was obtained. This level was also much closer to the output level of commercially available thermoelectric conversion elements that use semiconductors. It was also demonstrated that it was possible to significantly shorten development time to around 1 year.

“We will continue to further expand the search for materials using AI in the future, focusing on further improvement in the thermoelectric conversion efficiency of spin-current thermoelectric conversion elements and the development of new low-cost materials,” said Eiji Saitoh, Professor, Tohoku University.

“We aim for the early pranctical application of spin-current thermoelectric conversion elements as power source technology for IoT devices that will continue to work for years without a battery or other power source and as low cost, high performance electronic cooling technology,” said Soichi Tsumura, General Manager, NEC IoT Devices Research Laboratories.

These results were achieved as part of the Exploratory Research for Advanced Technology (ERATO) “SAITOH Spin Quantum Rectification Project” (Research Director: Eiji Saitoh, Professor, Tohoku University; Research Period: 2014 – 2020 fiscal year) of the Japan Science and Technology Agency (JST) and the Promoting Individual Research to Nurture the Seeds of Future Innovation and Organizing Unique, Innovative Network (PRESTO) “Development of Basic Technologies for Advanced Materials Informatics through Comprehensive Integration among Theoretical, Experimental, Computational and Data-Centric Sciences” (Researcher: Yuma Iwasaki, NEC Corporation; Research Period: 2017 -2021 fiscal year) of JST.

NEC plans to exhibit and showcase these research findings at nano tech 2018 – The 17th International Nanotechnology Exhibition & Conference from February 14 (Wed)-16 (Fri), 2018 at Tokyo Big Sight, Japan.

(1) A thermoelectric device is a device which converts thermal energy directly into electricity and vice versa.
(2) The spin current is a flow of a magnetic property of an electron, so-called “spin.”
(3) http://jpn.nec.com/ai/analyze/pattern.html
(4) “Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries” Y. Iwasaki et al., nature partner journal Computational Materials 3, 4 (2017).
(5) Proceedings of the 78th JSAP Autumn Meeting 5p-C18-4 (2017) R. Sawada et al.
(6) The combinatorial approach involves comprehensively investigating predicted combinations to gain an understanding of the overall trend of search candidates.
(7) Bayesian Optimization algorithms are stochastic optimization techniques that are used to search for the maximum or minimum value based on observed facts.

About NEC Corporation

NEC Corporation is a leader in the integration of IT and network technologies that benefit businesses and people around the world. By providing a combination of products and solutions that cross utilize the company’s experience and global resources, NEC’s advanced technologies meet the complex and ever-changing needs of its customers. NEC brings more than 100 years of expertise in technological innovation to empower people, businesses and society. For more information, visit NEC at http://www.nec.com.


Source: NEC Corporation

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This