NERSC Announces 2019 Early Career HPC Achievement Awards

January 13, 2020

Jan. 13, 2020 — Three young scientists who are avid users of supercomputing resources at the National Energy Research Scientific Computing Center (NERSC) have been chosen to receive 2019 High Performance Computing (HPC) Achievement Awards. The awards recognize early-career scientists who have used NERSC resources to make high-impact and innovative contributions to science.

“NERSC is pleased to recognize these young researchers’ outstanding scientific accomplishments using HPC,” said Richard Gerber, NERSC Senior Science Advisor. “They nicely represent the next generation of computational scientists who are going to drive scientific discovery over the coming decades.”

High-Impact Scientific Computing – Early Career

Gareth Roberg-Clark, University of Maryland

Gareth Roberg-Clark, a Ph.D. student at the University of Maryland, was honored in this category for his work in addressing the fundamental physics of thermal conduction. “From planetary interiors to clusters of galaxies, thermal conduction is a process of fundamental importance,” wrote Marc Swisdak, a research scientist at the University of Maryland who nominated Roberg-Clark for the award. In some settings the microphysics of thermal conduction is rigorously understood, he added. “However, there are environments of great interest to contemporary astrophysics where the physics of thermal conduction is poorly known.”

To address this challenge, Roberg-Clark uses a massively parallel particle-in-cell code to study thermal conduction and heat flux suppression in collisionless plasmas. He modified the code to incorporate a new boundary condition: a thermal gradient supported by different temperature walls at the ends of the computational domain. He then ran simulations, several using tens of thousands of cores on NERSC’s Edison supercomputer, and analyzed the results.

“I’m honored to receive this award and am grateful to NERSC for making this exciting and computationally challenging work possible,” Roberg-Clark said. “I would like to thank the awards committee, as well as my doctoral advisor James Drake.”

Since 2016, Roberg-Clark has published three first-author papers on this research. In the first, which has so far been cited 27 times, he showed that resonant interactions with Whistler modes can suppress thermal conduction for parameter regimes relevant to the intracluster medium. In the subsequent two papers (both from 2018 and already cited a combined 29 times), he explored the consequence of changing the plasma beta (the ratio of thermal to magnetic pressure). Those papers can be found here and here.

High-Impact Scientific Computing – Early Career

Haoming Liang, West Virginia University

Haoming Liang, a post-doctoral researcher at West Virginia University (WVU), was honored for using NERSC resources to explore the dynamics of magnetic reconnection in plasma physics in novel ways that are expected to dramatically impact the field, according to Paul Cassak, a professor of plasma physics theory and computation at WVU who nominated Liang for the award.

One of the grand challenge problems in plasma physics, Cassak noted, is magnetic reconnection, which occurs when oppositely directed magnetic fields come together and effectively break and cross connect. What makes reconnection problematic is that it is multi-scale; the energy released by the magnetic field can drastically alter the large-scale system, but the physics that allow the magnetic fields to reconnect takes place at extremely small scales.

To address this challenge, Liang implemented two different entropy diagnostics into p3d, a state-of-the-art electromagnetic particle-in-cell (PIC) code. He then used the entropy to assess how much numerical dissipation was occurring in the p3d simulation, and did a systematic analysis of parameters the user must set to do the entropy calculation. He also used the entropy diagnostic to learn some important basic physics of reconnection.

“This work will have a profound impact on fusion, solar and space physics, and the burgeoning field of plasma astrophysics for years to come,” Cassak said. “I believe that calculating entropy in PIC codes will begin to become the norm.”

“I am truly honored to be recognized for my work on kinetic entropy in magnetic reconnection using NERSC resources,” Liang said. “This award reinforces for me that this research is important, which greatly encourages me to improve upon the technique and apply it to more plasma systems where it will be of use.”

High-Impact Scientific Computing – Early Career

Xie Zhang, University of California, Santa Barbara

Xie Zhang, a postdoctoral researcher in Chris Van de Walle’s group at the University of California, Santa Barbara, is being recognized in this category for producing essential insights into recombination mechanisms in hybrid perovskites – highly efficient materials for photovoltaics – based on cutting-edge first-principles simulations. Understanding the underlying mechanisms of these materials is essential for uncovering new design principles for efficient solar cell materials and for designing optimal device structures.

Toward this end, Zhang developed a first-principles approach to quantitatively compute the spin texture of the electron and hole bands and the radiative recombination coefficient. These calculations require complex computations of eigenvalues, wavefunctions, and dipole matrix elements for dense k-point meshes in the Brillouin zone. Benefiting from the computational resources provided by NERSC, Zhang demonstrated that the radiative recombination in hybrid perovskites is actually very strong – a finding that should put an end to misguided attempts to analyze and design device characteristics based on erroneous assumptions.

“Zhang has addressed technologically relevant problems in hybrid perovskites by combining cutting-edge quantum mechanical methodologies with the NERSC high-performance supercomputing facilities,” Van de Walle said. “The unique insights obtained in these studies provide a new understanding of these materials and point the way toward improving their performance.”

“I am thrilled to receive the prestigious NERSC Early Career Achievement Award. It is not only a distinct honor for myself, but also an affirmation of the fundamental and systematic approach to research in the Van de Walle group at UCSB,” Zhang said. “The constant support from my advisor and colleagues has been essential.”

Since joined the Van de Walle group in 2017, he added, “we have been focusing on elucidating the recombination mechanisms in halide perovskites and have built up a set of computational approaches to address this problem. The actual calculations require compute resources that are well beyond the capability of most supercomputing centers. NERSC made the realization of our highly demanding computations possible, allowing us to develop a deep understanding of how recombination in halide perovskites operates.”

About NERSC and Berkeley Lab

The National Energy Research Scientific Computing Center (NERSC) is a U.S. Department of Energy Office of Science User Facility that serves as the primary high-performance computing center for scientific research sponsored by the Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 7,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a DOE national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the U.S. Department of Energy. »Learn more about computing sciences at Berkeley Lab.


Source: NERSC and Berkeley Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire