NERSC, ESnet Continue to Deliver Supercomputing, Networking Support for Nation’s Scientists During Pandemic

April 2, 2020

April 2, 2020 — While people around the world hunker down in their homes to try to slow the advance of the COVID-19 virus and many services have decreased or stopped, two user facilities operated by the U.S. Department of Energy’s Office of Science continue to provide critical computing and networking resources to thousands of scientists, including some who are exploring ways to fight the pandemic.

Cyber Liability Engineer monitors NERSC supercomputers from the facility’s control room at Berkeley Lab. Image courtesy of Marilyn Chung, Berkeley Lab.

The National Energy Research Scientific Computing Center (NERSC) and the Energy Sciences Network (ESnet) are managed by Lawrence Berkeley National Laboratory, which has reduced operations and onsite staffing under state-wide shelter-in-place orders. But NERSC and ESnet, deemed to provide essential services to the nation, continue to support “science as usual” as staff remotely manage the facilities from their homes.

NERSC has been named to the COVID-19 High Performance Computing Consortium. Led by the White House Office of Science and Technology Policy, industrial partners, and DOE, the consortium will give researchers access to supercomputers at DOE’s Argonne, Lawrence Livermore, Los Alamos, Oak Ridge, and Sandia national laboratories. ESnet will provide the robust, high-bandwidth connections and peerings allowing scientists to tap into these computing resources and move data from across the world to those sites for analysis.

With an eye on pandemic-related research, NERSC staff have set up dedicated priority queues to run COVID-19-related research projects on a supercomputer. In one project, scientists at the Beckman Research Institute at the City of Hope are running molecular dynamic simulations that apply to a range of COVID-19 research areas. In particular, they are looking at the difference between the Chinese and Italian strains of the virus as well as potential antiviral treatments.

“It’s very challenging for everyone, it’s unprecedented,” said NERSC Division Director Sudip Dosanjh. “Our staff are very dedicated, and I think this also shows their passion for the science mission of NERSC, ESnet, and the laboratory.”

NERSC’s Cori Supercomputer. Image courtesy of Roy Kaltschmidt, Berkeley Lab. 

In fact, shelter-in-place policies across the country appear to be fostering even greater demands on the supercomputers at NERSC. With travel plans and conferences delayed or canceled, many of NERSC’s more than 7,000 users are spending their time at home but still want to advance their research by running projects on the center’s systems, Dosanjh surmised.

“Thanks to the dedicated efforts of NERSC personnel to keep computing systems running and supporting users’ requests, our ‘computing lab’ (NERSC) remains open and operational at full capacity,” said Manos Mavrikakis, a NERSC user and distinguished professor at the University of Wisconsin-Madison whose work focuses on understanding catalytic process principles and the discovery of new materials that would enable more efficient energy production. “As a result, we have been able to continue pursuing our research on catalytic reaction mechanisms, pretty much at the same pace as before coronavirus dominated everybody’s lifestyle. We are enormously grateful to NERSC personnel for an excellent job under highly stressful conditions.”

“We recognize the importance of that and are seeing that the utilization of Cori, our primary computer, is at 97%, an all-time high,” Dosanjh said. “A lot of other people can’t do their work unless we do our job, and I couldn’t be more proud of our staff.”

Cori, a Cray XC40 supercomputer able to perform nearly 30 quadrillion calculations per second, is used to create detailed models of scientific problems and analyze massive amounts of data from experimental facilities operated by DOE.

Energy Sciences Network. Image courtesy of Berkeley Lab. 

ESnet provides the critical high-bandwidth connection between tens of thousands of researchers at national labs, universities, user facilities and supercomputer centers like NERSC. ESnet operates a dedicated multi-100-gigabits-per-second network that crisscrosses the country and has four similar links crossing the Atlantic Ocean for collaborations in Europe. Almost all network traffic passing to and from DOE laboratories traverses the network.

Although ESnet’s operations center is in Berkeley, about 40 percent of the staff live in other states across four time zones and are used to working offsite. The network operates 24 hours a day, 365 days a year, enabling scientists to seamlessly access data portals, transfer massive research data sets, and tap into remote scientific instruments — all in real time from anywhere.

The dispersed staff are both closer to other facilities and bring different perspectives to solving network issues, said Tony Ferrelli, head of ESnet’s Network Engineering and Operations Team. With so many people across the country working from home, ESnet has seen a blip in traffic moving onto the network, Ferrelli said, but there is still bandwidth to spare. One interesting note is that with more people working from home, they are finding that their home network connections are much slower than expected, which is compounded by increased demand, Ferrelli said.

Network staff are also on hand to help researchers should they need help managing the large datasets that are typical of DOE science, ESnet Director Inder Monga said.

“It’s all about the people – those of us whose job is to provide these resources and those who tap into them to support our nation’s scientific leadership,” Monga said. “With all these efforts, science is proceeding as usual.” By connecting with other research and education networks, ESnet is providing a critical link for scientists and consortium members like those from COVID-19 High Performance Computing Consortium with DOE supercomputer centers, thereby supporting research efforts into the COVID-19 pandemic.

About the Lawrence Berkeley National Laboratory 

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 13 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.


Source: Jon Bashor, Lawrence Berkeley National Laboratory 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire