NERSC, Intel, Cray Harness the Power of Deep Learning to Better Understand the Universe

September 7, 2018

Sept. 7, 2018 — A Big Data Center collaboration between computational scientists at Lawrence Berkeley National Laboratory’s (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC) and engineers at Intel and Cray has yielded another first in the quest to apply deep learning to data-intensive science: CosmoFlow, the first large-scale science application to use the TensorFlow framework on a CPU-based high performance computing platform with synchronous training. It is also the first to process three-dimensional (3D) spatial data volumes at this scale, giving scientists an entirely new platform for gaining a deeper understanding of the universe.

Cosmological ”big data” problems go beyond the simple volume of data stored on disk. Observations of the universe are necessarily finite, and the challenge that researchers face is how to extract the most information from the observations and simulations available. Compounding the issue is that cosmologists typically characterize the distribution of matter in the universe using statistical measures of the structure of matter in the form of two- or three-point functions or other reduced statistics. Methods such as deep learning that can capture all features in the distribution of matter would provide greater insight into the nature of dark energy. First to realize that deep learning could be applied to this problem were Siamak Ravanbakhsh and his colleagues, as referenced in proceedings of The 33rd International Conference on Machine Learning (http://proceedings.mlr.press/v48/ravanbakhshb16.pdf). However, computational bottlenecks when scaling up the network and dataset limited the scope of the problem that could be tackled.

Motivated to address these challenges, CosmoFlow was designed to be highly scalable; to process large, 3D cosmology datasets; and to improve deep learning training performance on modern HPC supercomputers such as the Intel® processor-based Cray® XC40™ Cori supercomputer at NERSC. CosmoFlow is built on top of the popular TensorFlow machine learning framework and uses Python as the front end. The application leverages the Cray PE Machine Learning Plugin to achieve unprecedented scaling of the TensorFlow Deep Learning framework to more than 8,000 nodes. It also benefits from Cray’s DataWarp™ I/O accelerator technology, which provides the I/O throughput required to reach this level of scalability.

In a technical paper to be presented at SC18 in November, the CosmoFlow team describes the application and initial experiments using dark matter N-body simulations produced using the MUSIC and pycola packages on the Cori supercomputer at NERSC. In a series of single-node and multi-node scaling experiments, the team was able to demonstrate fully synchronous data-parallel training on 8,192 of Cori with 77% parallel efficiency and 3.5 Pflop/s sustained performance.

“Our goal was to demonstrate that TensorFlow can run at scale on multiple nodes efficiently,” said Deborah Bard, a big data architect at NERSC and a co-author of the technical paper. “As far as we are aware, this is the largest ever deployment of TensorFlow on CPUs, and we think it is the largest attempt to run TensorFlow on the largest number of CPU nodes.”

Early on, the CosmoFlow team laid out three primary goals for this project: science, single-node optimization and scaling. The science goal was to demonstrate that deep learning can be used on 3D volumes to learn the physics of the universe. The team also wanted to ensure that TensorFlow ran efficiently and effectively on a single Intel® Xeon Phi™ processor node with 3D volumes, which are common in science but not so much in industry, where most deep learning applications deal with 2D image data sets. And finally, ensure high efficiency and performance when scaled across 1000’s of nodes on the Cori supercomputer system.

As Joe Curley, Sr. Director of the Code Modernization Organization in Intel’s Data Center Group, noted, “The Big Data Center collaboration has produced amazing results in computer science through the combination of Intel technology and dedicated software optimization efforts. During the CosmoFlow project, we identified framework, kernel and communication optimization that led to more than 750x performance increase for a single node. Equally as impressive, the team solved problems that limited scaling of deep learning techniques to 128 to 256 nodes – to now allow the CosmoFlow application to scale efficiently to the 8,192 nodes of the Cori supercomputer at NERSC.”

“We’re excited by the results and the breakthroughs in artificial intelligence applications from this collaborative project with NERSC and Intel,” said Per Nyberg, vice president of market development, artificial intelligence and cloud at Cray. “It is exciting to see the CosmoFlow team take advantage of unique Cray technology and leverage the power of the a Cray supercomputer to effectively scale deep learning models. It is a great example of what many of our customers are striving for in converging traditional modeling and simulation with new deep learning and analytics algorithms, all on a single, scalable platform.”

Prabhat, Group Leader of Data & Analytics Services at NERSC, added, “From my perspective, CosmoFlow is an exemplar project for the Big Data Center collaboration. We’ve truly leveraged competencies from various institutions to solve a hard scientific problem and enhance our production stack, which can benefit the broader NERSC user community.”

In addition to Bard and Prabhat, co-authors on the SC18 paper include Amrita Mathuriya, Lawrence Meadows, Lei Shao, Tuomas Karna, John Pennycook, Jason Sewall, Nalini Kumar and Victor Lee from Intel; Peter Mendygral, Diana Moise, Kristyn Maschhoff and Michael Ringenburg from Cray; Siyu He and Shirley Ho from the Flatiron Institute; and James Arnemann from UC Berkeley.

About NERSC and Berkeley Lab

The National Energy Research Scientific Computing Center (NERSC) is a U.S. Department of Energy Office of Science User Facility that serves as the primary high-performance computing center for scientific research sponsored by the Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 6,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a DOE national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the U.S. DOE Office of Science. »Learn more about computing sciences at Berkeley Lab.


Source: Kathy Kincade, NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Use Supercomputing to Study Links Between Hurricanes and Climate Change

July 19, 2019

As climate change looms, researchers are scrambling to answer the question of how a warming planet will affect the frequency and severity of already-deadly hurricanes. Now, a team of researchers from the University of Il Read more…

By Oliver Peckham

San Diego Supercomputer Center to Welcome ‘Expanse’ Supercomputer in 2020

July 18, 2019

With a $10 million dollar award from the National Science Foundation, San Diego Supercomputer Center (SDSC) at the University of California San Diego is procuring a new supercomputer, called Expanse, to be deployed next Read more…

By Staff report

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts flight characteristics. However, modeling the complexities and su Read more…

By Rob Johnson

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

How Fast is Your Rubik Solver; This One’s Probably Faster

July 18, 2019

In the race to solve Rubik’s Cube, the time-to-finish keeps shrinking. This year Philipp Weyer from Germany won the 10th World Cube Association (WCA) Championship held in Melbourne, Australia, with a 6.74-second perfo Read more…

By John Russell

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts fligh Read more…

By Rob Johnson

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This