NERSC, Intel, Cray Harness the Power of Deep Learning to Better Understand the Universe

September 7, 2018

Sept. 7, 2018 — A Big Data Center collaboration between computational scientists at Lawrence Berkeley National Laboratory’s (Berkeley Lab) National Energy Research Scientific Computing Center (NERSC) and engineers at Intel and Cray has yielded another first in the quest to apply deep learning to data-intensive science: CosmoFlow, the first large-scale science application to use the TensorFlow framework on a CPU-based high performance computing platform with synchronous training. It is also the first to process three-dimensional (3D) spatial data volumes at this scale, giving scientists an entirely new platform for gaining a deeper understanding of the universe.

Cosmological ”big data” problems go beyond the simple volume of data stored on disk. Observations of the universe are necessarily finite, and the challenge that researchers face is how to extract the most information from the observations and simulations available. Compounding the issue is that cosmologists typically characterize the distribution of matter in the universe using statistical measures of the structure of matter in the form of two- or three-point functions or other reduced statistics. Methods such as deep learning that can capture all features in the distribution of matter would provide greater insight into the nature of dark energy. First to realize that deep learning could be applied to this problem were Siamak Ravanbakhsh and his colleagues, as referenced in proceedings of The 33rd International Conference on Machine Learning (http://proceedings.mlr.press/v48/ravanbakhshb16.pdf). However, computational bottlenecks when scaling up the network and dataset limited the scope of the problem that could be tackled.

Motivated to address these challenges, CosmoFlow was designed to be highly scalable; to process large, 3D cosmology datasets; and to improve deep learning training performance on modern HPC supercomputers such as the Intel® processor-based Cray® XC40™ Cori supercomputer at NERSC. CosmoFlow is built on top of the popular TensorFlow machine learning framework and uses Python as the front end. The application leverages the Cray PE Machine Learning Plugin to achieve unprecedented scaling of the TensorFlow Deep Learning framework to more than 8,000 nodes. It also benefits from Cray’s DataWarp™ I/O accelerator technology, which provides the I/O throughput required to reach this level of scalability.

In a technical paper to be presented at SC18 in November, the CosmoFlow team describes the application and initial experiments using dark matter N-body simulations produced using the MUSIC and pycola packages on the Cori supercomputer at NERSC. In a series of single-node and multi-node scaling experiments, the team was able to demonstrate fully synchronous data-parallel training on 8,192 of Cori with 77% parallel efficiency and 3.5 Pflop/s sustained performance.

“Our goal was to demonstrate that TensorFlow can run at scale on multiple nodes efficiently,” said Deborah Bard, a big data architect at NERSC and a co-author of the technical paper. “As far as we are aware, this is the largest ever deployment of TensorFlow on CPUs, and we think it is the largest attempt to run TensorFlow on the largest number of CPU nodes.”

Early on, the CosmoFlow team laid out three primary goals for this project: science, single-node optimization and scaling. The science goal was to demonstrate that deep learning can be used on 3D volumes to learn the physics of the universe. The team also wanted to ensure that TensorFlow ran efficiently and effectively on a single Intel® Xeon Phi™ processor node with 3D volumes, which are common in science but not so much in industry, where most deep learning applications deal with 2D image data sets. And finally, ensure high efficiency and performance when scaled across 1000’s of nodes on the Cori supercomputer system.

As Joe Curley, Sr. Director of the Code Modernization Organization in Intel’s Data Center Group, noted, “The Big Data Center collaboration has produced amazing results in computer science through the combination of Intel technology and dedicated software optimization efforts. During the CosmoFlow project, we identified framework, kernel and communication optimization that led to more than 750x performance increase for a single node. Equally as impressive, the team solved problems that limited scaling of deep learning techniques to 128 to 256 nodes – to now allow the CosmoFlow application to scale efficiently to the 8,192 nodes of the Cori supercomputer at NERSC.”

“We’re excited by the results and the breakthroughs in artificial intelligence applications from this collaborative project with NERSC and Intel,” said Per Nyberg, vice president of market development, artificial intelligence and cloud at Cray. “It is exciting to see the CosmoFlow team take advantage of unique Cray technology and leverage the power of the a Cray supercomputer to effectively scale deep learning models. It is a great example of what many of our customers are striving for in converging traditional modeling and simulation with new deep learning and analytics algorithms, all on a single, scalable platform.”

Prabhat, Group Leader of Data & Analytics Services at NERSC, added, “From my perspective, CosmoFlow is an exemplar project for the Big Data Center collaboration. We’ve truly leveraged competencies from various institutions to solve a hard scientific problem and enhance our production stack, which can benefit the broader NERSC user community.”

In addition to Bard and Prabhat, co-authors on the SC18 paper include Amrita Mathuriya, Lawrence Meadows, Lei Shao, Tuomas Karna, John Pennycook, Jason Sewall, Nalini Kumar and Victor Lee from Intel; Peter Mendygral, Diana Moise, Kristyn Maschhoff and Michael Ringenburg from Cray; Siyu He and Shirley Ho from the Flatiron Institute; and James Arnemann from UC Berkeley.

About NERSC and Berkeley Lab

The National Energy Research Scientific Computing Center (NERSC) is a U.S. Department of Energy Office of Science User Facility that serves as the primary high-performance computing center for scientific research sponsored by the Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 6,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a DOE national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the U.S. DOE Office of Science. »Learn more about computing sciences at Berkeley Lab.


Source: Kathy Kincade, NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

From Deep Blue to Summit – 30 Years of Supercomputing Innovation

This week, in honor of the 30th anniversary of the SC conference, we are highlighting some of the most significant IBM contributions to supercomputing over the past 30 years. Read more…

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This