NERSC Supercomputers Help Berkeley Lab Scientists Map Key DNA Protein Complex

September 14, 2017

Sept. 14, 2017 — Chalking up another success for a new imaging technology that has energized the field of structural biology, researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) obtained the highest resolution map yet of a large assembly of human proteins that is critical to DNA function.

The scientists reported their achievement today in an advance online publication of the journal Nature. They used cryo-electron microscopy (cryo-EM) to resolve the 3-D structure of a protein complex called transcription factor IIH (TFIIH) at 4.4 angstroms, or near-atomic resolution. This protein complex is used to unzip the DNA double helix so that genes can be accessed and read during transcription or repair.

The cryo-EM structure of Transcription Factor II Human (TFIIH). The atomic coordinate model, colored according to the different TFIIH subunits, is shown inside the semi-transparent cryo-EM map. Credit: Basil Greber/Berkeley Lab and UC Berkeley – Click for GIF

“When TFIIH goes wrong, DNA repair can’t occur, and that malfunction is associated with severe cancer propensity, premature aging, and a variety of other defects,” said study principal investigator Eva Nogales, faculty scientist at Berkeley Lab’s Molecular Biophysics and Integrated Bioimaging Division. “Using this structure, we can now begin to place mutations in context to better understand why they give rise to misbehavior in cells.”

TFIIH’s critical role in DNA function has made it a prime target for research, but it is considered a difficult protein complex to study, especially in humans.

Mapping complex proteins

“As organisms get more complex, these proteins do, too, taking on extra bits and pieces needed for regulatory functions at many different levels,” said Nogales, who is also a UC Berkeley professor of molecular and cell biology and a Howard Hughes Medical Institute investigator. “The fact that we resolved this protein structure from human cells makes this even more relevant to disease research. There’s no need to extrapolate the protein’s function based upon how it works in other organisms.”

Biomolecules such as proteins are typically imaged using X-ray crystallography, but that method requires a large amount of stable sample for the crystallization process to work. The challenge with TFIIH is that it is hard to produce and purify in large quantities, and once obtained, it may not form crystals suitable for X-ray diffraction.

Enter cryo-EM, which can work even when sample amounts are very small. Electrons are sent through purified samples that have been flash-frozen at ultracold temperatures to prevent crystalline ice from forming.

Cryo-EM has been around for decades, but major advances over the past five years have led to a quantum leap in the quality of high-resolution images achievable with this technique.

“When your goal is to get resolutions down to a few angstroms, the problem is that anymotion gets magnified,” said study lead author Basil Greber, a UC Berkeley postdoctoral fellow at the California Institute for Quantitative Biosciences (QB3). “At high magnifications, the slight movement of the specimen as electrons move through leads to a blurred image.”

Making movies

The researchers credit the explosive growth in cryo-EM to advanced detector technology that Berkeley Lab engineer Peter Denes helped develop. Instead of a single picture taken for each sample, the direct detector camera shoots multiple frames in a process akin to recording a movie. The frames are then put together to create a high-resolution image. This approach resolves the blur from sample movement. The improved images contain higher quality data, and they allow researchers to study the sample in multiple states, as they exist in the cell.

Since shooting a movie generates far more data than a single frame, and thousands of movies are being collected during a microscopy session, the researchers needed the processing punch of supercomputers at the National Energy Research Scientific Computing Center (NERSC) at Berkeley Lab. The output from these computations was a 3-D map that required further interpretation.

“When we began the data processing, we had 1.5 million images of individual molecules to sort through,” said Greber. “We needed to select particles that are representative of an intact complex. After 300,000 CPU hours at NERSC, we ended up with 120,000 images of individual particles that were used to compute the 3-D map of the protein.”

To obtain an atomic model of the protein complex based on this 3-D map, the researchers used PHENIX (Python-based Hierarchical ENvironment for Integrated Xtallography), a software program whose development is led by Paul Adams, director of Berkeley Lab’s Molecular Biophysics and Integrated Bioimaging Division and a co-author of this study.

Not only does this structure improve basic understanding of DNA repair, the information could be used to help visualize how specific molecules are binding to target proteins in drug development.

“In studying the physics and chemistry of these biological molecules, we’re often able to determine what they do, but how they do it is unclear,” said Nogales. “This work is a prime example of what structural biologists do. We establish the framework for understanding how the molecules function. And with that information, researchers can develop finely targeted therapies with more predictive power.”

Other co-authors on this study are Pavel Afonine and Thi Hoang Duong Nguyen, both of whom have joint appointments at Berkeley Lab and UC Berkeley; and Jie Fang, a researcher at the Howard Hughes Medical Institute.

NERSC is a DOE Office of Science User Facility located at Berkeley Lab. In addition to NERSC, the researchers used the Lawrencium computing cluster at Berkeley Lab. This work was funded by the National Institute of General Medical Sciences and the Swiss National Science Foundation.

About NERSC and Berkeley Lab

The National Energy Research Scientific Computing Center (NERSC) is a U.S. Department of Energy Office of Science User Facility that serves as the primary high-performance computing center for scientific research sponsored by the Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 6,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a DOE national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the U.S. DOE Office of Science. Learn more about computing sciences at Berkeley Lab.


Source: NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that simulating physical systems could be done most effectively Read more…

By John Russell

RIKEN and CEA Mark One Year of Exascale-focused Collaboration

July 16, 2018

RIKEN in Japan and the French Alternative Energies and Atomic Energy Commission (CEA) formed a five-year cooperative research effort on January 11, 2017, to advance HPC and prepare for exascale computing (see HPCwire co Read more…

By Nishi Katsuya

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Meet the ISC18 Cluster Teams: Up Close & Personal

July 6, 2018

It’s time to meet your ISC18 Student Cluster Competition teams. While I was able to film them live at the ISC show, the trick was finding time to edit the vid Read more…

By Dan Olds

PRACEdays18 Keynote Allan Williams (Australia/NCI): We’re Open for Business Down Under!

July 5, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened with a plenary session on May 29, 2018 Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This