NERSC Accepts Edison Supercomputer

January 30, 2014

Jan. 30 — The National Energy Research Scientific Computing (NERSC) Center recently accepted “Edison,” a new flagship supercomputer designed for scientific productivity.

Named in honor of American inventor Thomas Alva Edison, the Cray XC30 will be dedicated in a ceremony held at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) on Feb. 5, and scientists are already reporting results.

About 5,000 researchers working on 700 projects and running 600 different codes compute at NERSC, which is operated by Berkeley Lab. They produce an average of 1,700 peer-reviewed publications every year, making NERSC the most productive scientific computing center serving the Department of Energy’s Office of Science.

“We support a very broad range of science, from basic energy research to climate science, from biosciences to discovering new materials, exploring high energy physics and even uncovering the very origins of the universe,” said NERSC Director Sudip Dosanjh.

Edison can execute nearly 2.4 quadrillion floating-point operations per second (petaflop/s) at peak theoretical speeds. While theoretical speeds are impressive, “NERSC’s longstanding approach is to evaluate proposed systems by how well they meet the needs of our diverse community of researchers, so we focus on sustained performance on real applications,” said NERSC Division Deputy for Operations Jeff Broughton, who led the Edison procurement team.

“For us, what’s really important is the scientific productivity of our users,” Dosanjh said. That’s why Edison was configured to handle two kinds of computing equally well: data analysis and simulation and modeling.

Data Analysis Joins Simulation and Modeling

Traditionally, scientific supercomputers are configured to simulate and model complex phenomena, such as nanomaterials converting electricity into photons of light, climate changing over decades or centuries, or interstellar gases forming into stars and galaxies. Simulations require a lot of processors running in unison, but not necessarily a lot of memory for each processor.

Data analysis, such as genome sequencing or molecular screening programs that search for promising new materials or drugs,  often involves high throughput computing—running large numbers of loosely coupled simulations simultaneously. Such “ensemble computing” requires more memory per node and has typically been relegated to separate computer clusters. As instruments and experiments deliver more and more data however, scientists need more computing power to crunch it; so smaller clusters no longer suffice.

“Facilities throughout the Department of Energy are being inundated with data that researchers don’t have the ability to understand, process or analyze sufficiently,” said Dosanjh. Historically, NERSC was an exporter of data as scientists ran large-scale simulations and then moved that data to other sites. But with the growth of experimental data coming from other sites, NERSC is now a net importer, taking in a petabyte of data in fields such as biosciences, climate and high-energy physics each month.

Both types of computing rely heavily on moving data, said Dosanjh. “So Edison has been optimized for that: It has a really high-speed interconnect, it has lots of memory bandwidth, lots of memory per node, and it has very high input/output speeds to the file system and disk system.”

“If you have a computing resource like Edison, one with the flexibility to run different classes of problems, then you can apply the full capacity of your system to the problem at hand, whether that be high-throughput genome sequencing or highly parallel climate simulations,” said Broughton.

Less Time Tweaking Codes, More Time Doing Science

Because Edison does not employ accelerators, such as graphics processing units (GPUs), scientists have been able to move their codes from NERSC’s previous flagship system (a Cray XE6 named for computer scientist Grace Hopper) to Edison with little or no changes, another consideration meant to keep scientists doing science instead of rewriting code.

“We were able to open Edison to all our users shortly after installation for testing, and the system was immediately full,” said Broughton. By the time Edison was accepted and placed into production, scientists had logged millions of processor hours of research into areas as varied as carbon sequestration, nanomaterials, cosmology, and combustion.

And while researchers may not see or appreciate Edison’s advances in energy efficiency, it will impact their ability to do science. “In coming years, performance will be more limited by power than anything else, so energy efficiency is critical,” said Dosanjh.

Free Cooling

In preparation for its 2015 move into a custom-built data center (the Computational Research and Theory facility), Edison is the first supercomputer at NERSC to rely solely on outside air for cooling, a technique known as “free cooling.” Edison is cooled without mechanical chillers. Instead water is circulated through outdoor cooling towers and back into the system’s internal radiators, which cool air rather than heat it. Fans located between each pair of cabinets in a row pull air in one end; circulate it through a radiator, over the hot components and on to the next set of cabinets before it exits at the row’s end. This side-to-side airflow, or transverse cooling, is more energy efficient than the typical front-to-back flow of most systems.

Edison will be dedicated on Ferbruary 5 as part of the annual NERSC Users Group being held February 3-6 at Berkeley Lab. “As we celebrate NERSC’s 40th anniversary, it’s quite fitting we start the year by dedicating Edison, a system that embodies our guiding principle over the last four decades: computing in the service of science,” said NERSC director Dosanjh.

Deployment of Edison was made possible in part by funding from DOE’s Office of Science and the DARPA High Productivity Computing Systems program.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.  For more information, please visit science.energy.gov.

About NERSC and Berkeley Lab

The National Energy Research Scientific Computing Center (NERSC) is the primary high-performance computing facility for scientific research sponsored by the U.S. Department of Energy’s Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 4,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the U.S. DOE Office of Science.

—–

Source: NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This