Neutrino Observation Points to One Source of High-Energy Cosmic Rays

July 12, 2018

July 12, 2018 — Observations made by researchers using a National Science Foundation (NSF) detector at the South Pole and verified by ground- and space-based telescopes have produced the first evidence of one source of high-energy cosmic neutrinos. These ghostly subatomic particles can travel unhindered for billions of light-years, journeying to Earth from some of the most extreme environments in the universe.

Data gathered by NSF’s IceCube Neutrino Observatory at the foundation’s Amundsen-Scott South Pole Station in Antarctica point to an answer to a more than century-old riddle about the origins of high-energy cosmic rays.

That the detection was confirmed by other instruments, including an orbiting telescope operated by NASA, is a demonstration of the value of the emerging field of “multi-messenger astronomy,” which describes the ability to marshal instruments globally to make and verify discoveries by combining data from messenger signals that reveal information about the universe.

“The era of multi-messenger astrophysics is here,” said NSF Director France Córdova. “Each messenger — from electromagnetic radiation, gravitational waves and now neutrinos — gives us a more complete understanding of the universe, and important new insights into the most powerful objects and events in the sky. Such breakthroughs are only possible through a long-term commitment to fundamental research and investment in superb research facilities.”

NSF’s IceCube was built by NSF specifically to identify and track high-energy neutrinos. It sighted the first neutrinos from beyond our galaxy in 2013 and since has made numerous fundamental measurements in neutrino astronomy, which helps scientists make sense of matter in its most elementary forms.

The NSF Office of Polar Programs, which manages the U.S. Antarctic Program (USAP), and the Physics Division in its Mathematical and Physical Sciences Directorate jointly oversee the operations of NSF’s IceCube, the world’s largest neutrino detector.

Mysterious origins

Since they were first detected in 1912, cosmic rays have posed an enduring mystery: What creates and propels them across vast distances before they rain down on Earth? Where do they come from?

Cosmic rays are charged particles. This attribute makes tracing their paths back to their points of origin impossible, as the magnetic fields that fill space affect them, altering their trajectories. But the powerful, naturally occurring cosmic accelerators that produce cosmic rays also produce cosmic neutrinos. Neutrinos are uncharged particles, unaffected by even the most powerful magnetic fields. Because they rarely interact with matter and have almost no mass — hence their nickname “ghost particle” — neutrinos travel nearly undisturbed, giving scientists an almost direct pointer to their source.

The group of international researchers that made this most recent discovery traced the path of a single neutrino detected by NSF’s IceCube Sept. 22, 2017 to a previously known but little-studied blazar, the nucleus of a giant galaxy that fires off particles in massive jets of elementary particles, powered by a supermassive black hole at its core. Astronomers had designated this blazar as TXS 0506+056.

The team published their results in two papers this week (July 13) in the journal Science.

“The evidence for the observation of the first known source of high-energy neutrinos and cosmic rays is compelling,” said Francis Halzen, a University of Wisconsin-Madison professor of physics and the lead scientist for the IceCube Neutrino Observatory.

Equipped with a relatively new alert system — triggered when neutrinos of very high energies crash into an atomic nucleus in or near NSF’s IceCube detector — the observatory sent coordinates to telescopes worldwide less than a minute after detection for follow-up observations.

Two gamma-ray telescopes, NASA’s orbiting Fermi Gamma-ray Space Telescope — which had already observed enhanced gamma-ray activity from the direction of the blazar during its regular scans of the entire sky every three hours — and the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) in the Canary Islands, looked in the direction provided by NSF’s IceCube. They detected a flare of high-energy gamma rays associated with TXS 0506+056. The convergence of multi-messenger observations identified the blazar as the source.

High-energy particles

Fermi was the first telescope to identify enhanced gamma-ray activity from TXS 0506+056 within 0.06 degrees of the IceCube neutrino direction. Over a decade of Fermi observations of this source, this was the strongest flare in gamma rays, the highest-energy photons. A later follow-up by MAGIC detected gamma rays of even higher energies.

High-energy gamma rays can be produced either by accelerated electrons or protons. The observation of a neutrino, a hallmark of proton interactions, is the first definitive evidence of proton acceleration by black holes.

“Now, we have identified at least one source of cosmic rays because it produces cosmic neutrinos,” Halzen said. “Neutrinos are the decay products of pions. In order to produce them, you need a proton accelerator.”

The observations prove that TXS 056+056 is among the most luminous sources in the known universe and thus add support to a multi-messenger observation of a cosmic engine powerful enough to accelerate high-energy cosmic rays and produce the associated neutrinos. One of these neutrinos, out of many millions that sailed through Antarctica’s ice, was captured by NSF’s IceCube Sept. 22.

Following the Sept. 22 detection, the IceCube team quickly scoured the detector’s archival data — NSF’s IceCube is always on and looking in all directions, including through the Earth to the sky in the Northern Hemisphere — and discovered a flare of neutrinos from December 2014, coincident with the same blazar, TXS 0506+056, which scientists have nicknamed “the Texas source.”

That independent observation greatly strengthens the initial detection of a single, high-energy neutrino and adds to a growing body of data that indicates that the blazar is the first known source of high-energy neutrinos and high-energy cosmic rays.

Neutrino detection methods

The crystal-clear ice beneath the South Pole provides the medium that allows NSF’s IceCube to document the interaction of neutrinos with terrestrial matter. Collisions between high-energy neutrinos and atomic nuclei are very rare but produce an unmistakable signature — a characteristic cone of blue light that is mapped through the detector’s grid of 5,000 photomultiplier tubes.

When a neutrino slams into the nucleus of an atom, it creates one or more secondary charged particles, which, in turn, create the blue light. Because the charged particle and light it creates stay essentially true to the neutrino’s direction, it gives scientists a path to follow back to a source.

NSF’s IceCube observatory is operated by an international collaboration that includes more than 300 scientists from 49 different institutions in 12 countries. The observatory is part of the Wisconsin IceCube Particle Astrophysics Center, based at the University of Wisconsin. The center brings together scientific, engineering, computing and educational resources around the theme of particle astrophysics.

The NSF-managed USAP built and maintains the IceCube observatory in one of the world’s harshest environments. The need to ship all of the components to build the detector in the holds of military cargo aircraft, as well as the development of hot-water drilling techniques required to install instruments into the ice sheet, make NSF’s IceCube, which became operational in 2010, the culmination of a uniquely challenging scientific and logistical endeavor.

NSF provided approximately $242 million of the total cost of building IceCube, while other partners provided an additional $37 million. NSF also provides $7 million annually to operate and maintain the facility.

About 20 observatories on Earth and in space have participated in this discovery. The observations across the electromagnetic spectrum, listed alphabetically by project for the given wavelength, include: gamma-rays by the space missions AGILE, INTEGRAL, and Fermi and ground-based telescopes HAWC in Mexico, H.E.S.S. in Namibia, MAGIC in Spain, and VERITAS in the U.S.; X-rays, optical, and radio radiation by space missions MAXI, NuSTAR, and Swift and ground-based observatories ASAS-SN in Chile and the U.S., GTC in Spain, Kanata in Japan, Kapteyn in Spain and the U.S, Kiso in Japan, Liverpool in Spain, OVRO in the U.S., SALT in South Africa, Subaru in Japan, and VLA in the U.S; and neutrinos by ANTARES in France. These observatories are run by international teams with a total of over a thousand scientists supported by funding agencies in countries around the world. Several follow-up observations are detailed in a few other papers that are also released today.


Source: NSF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This