Neutrino Observation Points to One Source of High-Energy Cosmic Rays

July 12, 2018

July 12, 2018 — Observations made by researchers using a National Science Foundation (NSF) detector at the South Pole and verified by ground- and space-based telescopes have produced the first evidence of one source of high-energy cosmic neutrinos. These ghostly subatomic particles can travel unhindered for billions of light-years, journeying to Earth from some of the most extreme environments in the universe.

Data gathered by NSF’s IceCube Neutrino Observatory at the foundation’s Amundsen-Scott South Pole Station in Antarctica point to an answer to a more than century-old riddle about the origins of high-energy cosmic rays.

That the detection was confirmed by other instruments, including an orbiting telescope operated by NASA, is a demonstration of the value of the emerging field of “multi-messenger astronomy,” which describes the ability to marshal instruments globally to make and verify discoveries by combining data from messenger signals that reveal information about the universe.

“The era of multi-messenger astrophysics is here,” said NSF Director France Córdova. “Each messenger — from electromagnetic radiation, gravitational waves and now neutrinos — gives us a more complete understanding of the universe, and important new insights into the most powerful objects and events in the sky. Such breakthroughs are only possible through a long-term commitment to fundamental research and investment in superb research facilities.”

NSF’s IceCube was built by NSF specifically to identify and track high-energy neutrinos. It sighted the first neutrinos from beyond our galaxy in 2013 and since has made numerous fundamental measurements in neutrino astronomy, which helps scientists make sense of matter in its most elementary forms.

The NSF Office of Polar Programs, which manages the U.S. Antarctic Program (USAP), and the Physics Division in its Mathematical and Physical Sciences Directorate jointly oversee the operations of NSF’s IceCube, the world’s largest neutrino detector.

Mysterious origins

Since they were first detected in 1912, cosmic rays have posed an enduring mystery: What creates and propels them across vast distances before they rain down on Earth? Where do they come from?

Cosmic rays are charged particles. This attribute makes tracing their paths back to their points of origin impossible, as the magnetic fields that fill space affect them, altering their trajectories. But the powerful, naturally occurring cosmic accelerators that produce cosmic rays also produce cosmic neutrinos. Neutrinos are uncharged particles, unaffected by even the most powerful magnetic fields. Because they rarely interact with matter and have almost no mass — hence their nickname “ghost particle” — neutrinos travel nearly undisturbed, giving scientists an almost direct pointer to their source.

The group of international researchers that made this most recent discovery traced the path of a single neutrino detected by NSF’s IceCube Sept. 22, 2017 to a previously known but little-studied blazar, the nucleus of a giant galaxy that fires off particles in massive jets of elementary particles, powered by a supermassive black hole at its core. Astronomers had designated this blazar as TXS 0506+056.

The team published their results in two papers this week (July 13) in the journal Science.

“The evidence for the observation of the first known source of high-energy neutrinos and cosmic rays is compelling,” said Francis Halzen, a University of Wisconsin-Madison professor of physics and the lead scientist for the IceCube Neutrino Observatory.

Equipped with a relatively new alert system — triggered when neutrinos of very high energies crash into an atomic nucleus in or near NSF’s IceCube detector — the observatory sent coordinates to telescopes worldwide less than a minute after detection for follow-up observations.

Two gamma-ray telescopes, NASA’s orbiting Fermi Gamma-ray Space Telescope — which had already observed enhanced gamma-ray activity from the direction of the blazar during its regular scans of the entire sky every three hours — and the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) in the Canary Islands, looked in the direction provided by NSF’s IceCube. They detected a flare of high-energy gamma rays associated with TXS 0506+056. The convergence of multi-messenger observations identified the blazar as the source.

High-energy particles

Fermi was the first telescope to identify enhanced gamma-ray activity from TXS 0506+056 within 0.06 degrees of the IceCube neutrino direction. Over a decade of Fermi observations of this source, this was the strongest flare in gamma rays, the highest-energy photons. A later follow-up by MAGIC detected gamma rays of even higher energies.

High-energy gamma rays can be produced either by accelerated electrons or protons. The observation of a neutrino, a hallmark of proton interactions, is the first definitive evidence of proton acceleration by black holes.

“Now, we have identified at least one source of cosmic rays because it produces cosmic neutrinos,” Halzen said. “Neutrinos are the decay products of pions. In order to produce them, you need a proton accelerator.”

The observations prove that TXS 056+056 is among the most luminous sources in the known universe and thus add support to a multi-messenger observation of a cosmic engine powerful enough to accelerate high-energy cosmic rays and produce the associated neutrinos. One of these neutrinos, out of many millions that sailed through Antarctica’s ice, was captured by NSF’s IceCube Sept. 22.

Following the Sept. 22 detection, the IceCube team quickly scoured the detector’s archival data — NSF’s IceCube is always on and looking in all directions, including through the Earth to the sky in the Northern Hemisphere — and discovered a flare of neutrinos from December 2014, coincident with the same blazar, TXS 0506+056, which scientists have nicknamed “the Texas source.”

That independent observation greatly strengthens the initial detection of a single, high-energy neutrino and adds to a growing body of data that indicates that the blazar is the first known source of high-energy neutrinos and high-energy cosmic rays.

Neutrino detection methods

The crystal-clear ice beneath the South Pole provides the medium that allows NSF’s IceCube to document the interaction of neutrinos with terrestrial matter. Collisions between high-energy neutrinos and atomic nuclei are very rare but produce an unmistakable signature — a characteristic cone of blue light that is mapped through the detector’s grid of 5,000 photomultiplier tubes.

When a neutrino slams into the nucleus of an atom, it creates one or more secondary charged particles, which, in turn, create the blue light. Because the charged particle and light it creates stay essentially true to the neutrino’s direction, it gives scientists a path to follow back to a source.

NSF’s IceCube observatory is operated by an international collaboration that includes more than 300 scientists from 49 different institutions in 12 countries. The observatory is part of the Wisconsin IceCube Particle Astrophysics Center, based at the University of Wisconsin. The center brings together scientific, engineering, computing and educational resources around the theme of particle astrophysics.

The NSF-managed USAP built and maintains the IceCube observatory in one of the world’s harshest environments. The need to ship all of the components to build the detector in the holds of military cargo aircraft, as well as the development of hot-water drilling techniques required to install instruments into the ice sheet, make NSF’s IceCube, which became operational in 2010, the culmination of a uniquely challenging scientific and logistical endeavor.

NSF provided approximately $242 million of the total cost of building IceCube, while other partners provided an additional $37 million. NSF also provides $7 million annually to operate and maintain the facility.

About 20 observatories on Earth and in space have participated in this discovery. The observations across the electromagnetic spectrum, listed alphabetically by project for the given wavelength, include: gamma-rays by the space missions AGILE, INTEGRAL, and Fermi and ground-based telescopes HAWC in Mexico, H.E.S.S. in Namibia, MAGIC in Spain, and VERITAS in the U.S.; X-rays, optical, and radio radiation by space missions MAXI, NuSTAR, and Swift and ground-based observatories ASAS-SN in Chile and the U.S., GTC in Spain, Kanata in Japan, Kapteyn in Spain and the U.S, Kiso in Japan, Liverpool in Spain, OVRO in the U.S., SALT in South Africa, Subaru in Japan, and VLA in the U.S; and neutrinos by ANTARES in France. These observatories are run by international teams with a total of over a thousand scientists supported by funding agencies in countries around the world. Several follow-up observations are detailed in a few other papers that are also released today.


Source: NSF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire