New C-BRIC Center Will Tackle Brain-Inspired Computing

January 16, 2018

WEST LAFAYETTE, Ind., Jan. 16, 2018 — Purdue University will lead a new national center to develop brain-inspired computing for intelligent autonomous systems such as drones and personal robots capable of operating without human intervention.

The Center for Brain-inspired Computing Enabling Autonomous Intelligence, or C-BRIC, is a five-year project supported by $27 million in funding from the Semiconductor Research Corp (SRC) via their Joint University Microelectronics Program, which provides funding from a consortium of industrial sponsors as well as from the Defense Advanced Research Projects Agency. The SRC operates research programs in the United States and globally that connect industry to university researchers, deliver early results to enable technological advances, and prepare a highly-trained workforce for the semiconductor industry. Additional funds include $3.96 million from Purdue and as well as support from other participating universities. At the state level, the Indiana Economic Development Corporation will be providing funds, pending board approval, to establish an intelligent autonomous systems laboratory at Purdue.

C-BRIC, which begins operating in January 2018, will be led by Kaushik Roy, Purdue’s Edward G. Tiedemann Jr. Distinguished Professor of Electrical and Computer Engineering (ECE), with Anand Raghunathan, Purdue professor of ECE, as associate director. Other Purdue faculty involved in the center include Suresh Jagannathan, professor of computer science and ECE; and Eugenio Culurciello, associate professor of biomedical engineering, ECE and mechanical engineering. The center will involve seven other universities, pending final contracts, which include Arizona State University, Georgia Institute of Technology, Pennsylvania State University, Portland State University, Princeton University, University of Pennsylvania, and University of Southern California, around seventeen faculty, and around 85 graduate students and postdoctoral researchers.

“The center’s goal is to develop neuro-inspired algorithms, architectures and circuits for perception, reasoning and decision-making, which today’s standard computing is unable to do efficiently,” Roy said.

Efficiency here implies energy use. For example, while advanced computers such as IBM’s Watson and Google’s AlphaGo have beaten humans at high-level cognitive tasks, they also consume hundreds of thousands of watts of power to do so, whereas the human brain requires only around 20 watts.

“We have to narrow this huge efficiency gap to enable continued improvements in artificial intelligence in the face of diminishing benefits from technology scaling,” Raghunathan said. “C-BRIC will develop technologies to perform brain-like functions with brain-like efficiency.”

In addition, the center will enable next-generation autonomous intelligent systems capable of accomplishing both “end-to-end” functions and completion of mission-critical tasks without human intervention.

“Autonomous intelligent systems will require real-time closed-loop control, leading to new challenges in neural algorithms, software and hardware,” said Venkataramanan (Ragu) Balakrishnan, Purdue’s Michael and Katherine Birck Head and Professor of Electrical and Computer Engineering. “Purdue’s long history of preeminence in related research areas such as neuromorphic computing and energy-efficient electronics positions us well to lead this effort.”

“Purdue is up to the considerable challenges that will be posed by C-BRIC,” said Suresh Garimella, Purdue’s executive vice president for research and partnerships and the R. Eugene and Susie E. Goodson Distinguished Professor of Mechanical Engineering. “We are excited that our faculty and students are embarking on this ambitious mission to shape the future of intelligent autonomous systems.”

Mung Chiang, Purdue’s John A. Edwardson Dean of the College of Engineering, said, “C-BRIC represents a game-changer in artificial intelligence. These outstanding colleagues in Electrical and Computer Engineering and other departments at Purdue will carry out transformational research on efficient, distributed intelligence.”

To achieve their goals, C-BRIC researchers will improve the theoretical and mathematical underpinnings of neuro-inspired algorithms.

“This is very important,” Raghunathan said. “The underlying theory of brain-inspired computing needs to be better worked out, and we believe this will lead to broader applicability and improved robustness.”

At the same time, new autonomous systems will have to possess “distributed intelligence” that allows various parts, such as the multitude of “edge devices” in the so-called Internet of Things, to work together seamlessly.

“We are excited to bring together a multi-disciplinary team with expertise spanning algorithms, theory, hardware and system-building, that will enable us to pursue a holistic approach to brain-inspired computing, and to hopefully deliver an efficiency closer to that of the brain,” Roy said.

Information about the SRC can be found at https://www.src.org/.


Source: Purdue University

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This