New Experiment Translates Quantum Information Between Tech in Important Step for Quantum Internet

March 24, 2023

March 24, 2023 — Researchers have discovered a way to “translate” quantum information between different kinds of quantum technologies, with significant implications for quantum computing, communication, and networking.

A niobium superconducting cavity. The holes lead to tunnels which intersect to trap light and atoms.

The research, published in the journal Nature on Wednesday, was funded by the Army Research Office (ARO), the Air Force Office of Scientific Research (AFOSR), and the NSF Quantum Leap Challenge Institute for Hybrid Quantum Architectures and Networks (HQAN), which is led by the University of Illinois Urbana-Champaign. It represents a new way to convert quantum information from the format used by quantum computers to the format needed for quantum communication.

Photons—particles of light—are essential for quantum information technologies, but different technologies use them at different frequencies. For example, some of the most common quantum computing technology is based on superconducting qubits, such as those used by tech giants Google and IBM; these qubits store quantum information in photons that move at microwave frequencies.

But if you want to build a quantum network, or connect quantum computers, you can’t send around microwave photons because their grip on their quantum information is too weak to survive the trip.

“A lot of the technologies that we use for classical communication—cell phones, Wi-Fi, GPS and things like that—all use microwave frequencies of light,” said Aishwarya Kumar, a postdoc at the James Franck Institute at University of Chicago and lead author on the paper. “But you can’t do that for quantum communication because the quantum information you need is in a single photon. And at microwave frequencies, that information will get buried in thermal noise.”

The solution is to transfer the quantum information to a higher-frequency photon, called an optical photon, which is much more resilient against ambient noise. But the information can’t be transferred directly from photon to photon; instead, we need intermediary matter. Some experiments design solid state devices for this purpose, but Kumar’s experiment aimed for something more fundamental: atoms.

A diagram of the electron energy levels of Rubidium. Two of the energy level gaps match the frequencies of optical photons and microwave photons, respectively. Lasers are used to force the electron to jump to higher levels or drop to lower levels.

The electrons in atoms are only ever allowed to have certain specific amounts of energy, called energy levels. If an electron is sitting at a lower energy level, it can be excited to a higher energy level by hitting it with a photon whose energy exactly matches the difference between the higher and lower level. Similarly, when an electron is forced to drop to a lower energy level, the atom then emits a photon with an energy that matches the energy difference between levels.

Rubidium atoms happen to have two gaps in their levels that Kumar’s technology exploits: one that exactly equals the energy of a microwave photon, and one that exactly equals the energy of an optical photon. By using lasers to shift the atom’s electron energies up and down, the technology allows the atom to absorb a microwave photon with quantum information and then emit an optical photon with that quantum information. This translation between different modes of quantum information is called “transduction.”

Effectively using atoms for this purpose is made possible by the significant progress scientists have made in manipulating such small objects. “We as a community have built remarkable technology in the last 20 or 30 years that lets us control essentially everything about the atoms,” Kumar said. “So the experiment is very controlled and efficient.”

He says the other secret to their success is the field’s progress in cavity quantum electrodynamics, where a photon is trapped in a superconducting, reflective chamber. Forcing the photon to bounce around in an enclosed space, the superconducting cavity strengthens the interaction between the photon and whatever matter is placed inside it.

Their chamber doesn’t look very enclosed—in fact, it more closely resembles a block of Swiss cheese. But what look like holes are actually tunnels that intersect in a very specific geometry, so that photons or atoms can be trapped at an intersection. It’s a clever design that also allows researchers access to the chamber so they can inject the atoms and the photons.

The technology works both ways: it can transfer quantum information from microwave photons to optical photons, and vice versa. So it can be on either side of a long-distance connection between two superconducting qubit quantum computers, and serve as a fundamental building block to a quantum internet.

But Kumar thinks there may be a lot more applications for this technology than just quantum networking. Its core ability is to strongly entangle atoms and photons—an essential, and difficult task in many different quantum technologies across the field.

“One of the things that we’re really excited about is the ability of this platform to generate really efficient entanglement,” he said. “Entanglement is central to almost everything quantum that we care about, from computing to simulations to metrology and atomic clocks. I’m excited to see what else we can do.”


Source: Meredith Fore, Chicago Quantum Exchange

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ASC23: LINPACK Results

May 30, 2023

With ISC23 now in the rearview mirror, let’s get back to the results from the ASC23 Student Cluster Competition. In our last articles, we looked at the competition and applications, plus introduced the teams, now it’ Read more…

At ISC, Sustainable Computing Leaders Discuss HPC’s Energy Crossroads

May 30, 2023

In the wake of SC22 last year, HPCwire wrote that “the conference’s eyes had shifted to carbon emissions and energy intensity” rather than the historical emphasis on flops-per-watt and power usage effectiveness (PU Read more…

Nvidia Launches Spectrum-X Networking Platform for Generative AI

May 29, 2023

Nvidia launched a new Ethernet-based networking platform – the Nvidia Spectrum-X – that targets generative AI workloads. Based on tight coupling of the Nvidia Spectrum-4 Ethernet switch with the Nvidia BlueField-3 D Read more…

Nvidia Announces Four Supercomputers, with Two in Taiwan

May 29, 2023

At the Computex event in Taipei this week, Nvidia announced four new systems equipped with its Grace- and Hopper-generation hardware, including two in Taiwan. Those two are Taiwania 4, powered by Nvidia’s Grace CPU Sup Read more…

Nvidia Announces New ‘1 Exaflops’ AI Supercomputer; Grace-Hopper in ‘Full Production’

May 28, 2023

We in HPC sometimes roll our eyes at the term “AI supercomputer,” but a new system from Nvidia might live up to the moniker: the DGX GH200 AI supercomputer. Announced tonight (mid-day Monday in Taiwan) at Computex in Read more…

AWS Solution Channel

Shutterstock 1493175377

Introducing GPU health checks in AWS ParallelCluster 3.6

GPU failures are relatively rare but when they do occur, they can have severe consequences for HPC and deep learning tasks. For example, they can disrupt long-running simulations and distributed training jobs. Read more…

 

Shutterstock 1415788655

New Thoughts on Leveraging Cloud for Advanced AI

Artificial intelligence (AI) is becoming critical to many operations within companies. As the use and sophistication of AI grow, there is a new focus on the infrastructure requirements to produce results fast and efficiently. Read more…

Closing ISC Keynote by Sterling and Suarez Looks Backward and Forward

May 25, 2023

ISC’s closing keynote this year was given jointly by a pair of distinguished HPC leaders, Thomas Sterling of Indiana University and Estela Suarez of Jülich Supercomputing Centre (JSC). Ostensibly, Sterling tackled the Read more…

At ISC, Sustainable Computing Leaders Discuss HPC’s Energy Crossroads

May 30, 2023

In the wake of SC22 last year, HPCwire wrote that “the conference’s eyes had shifted to carbon emissions and energy intensity” rather than the historical Read more…

Nvidia Announces Four Supercomputers, with Two in Taiwan

May 29, 2023

At the Computex event in Taipei this week, Nvidia announced four new systems equipped with its Grace- and Hopper-generation hardware, including two in Taiwan. T Read more…

Nvidia Announces New ‘1 Exaflops’ AI Supercomputer; Grace-Hopper in ‘Full Production’

May 28, 2023

We in HPC sometimes roll our eyes at the term “AI supercomputer,” but a new system from Nvidia might live up to the moniker: the DGX GH200 AI supercomputer. Read more…

Closing ISC Keynote by Sterling and Suarez Looks Backward and Forward

May 25, 2023

ISC’s closing keynote this year was given jointly by a pair of distinguished HPC leaders, Thomas Sterling of Indiana University and Estela Suarez of Jülich S Read more…

The Grand Challenge of Simulating Nuclear Fusion: An Overview with UKAEA’s Rob Akers

May 25, 2023

As HPC and AI continue to rapidly advance, the alluring vision of nuclear fusion and its endless zero-carbon, low-radioactivity energy is the sparkle in many a Read more…

MareNostrum 5 Hits Speed Bumps; Iconic Chapel to Host Quantum Systems

May 23, 2023

MareNostrum 5, the next-generation supercomputer at the Barcelona Supercomputing Center (BSC) and one of EuroHPC’s flagship pre-exascale systems, has had a di Read more…

ISC Keynote: To Reinvent HPC After Moore’s Law, Follow the Money

May 23, 2023

This year’s International Supercomputing Conference (ISC) kicked off yesterday in Hamburg, Germany, with a keynote from Dan Reed, presidential professor at th Read more…

ISC BOF: Euro Quantum Community Tackles HPC-QC Integration, Broad User Access

May 23, 2023

Europe has clearly jumped into the global race to achieve practical quantum, though perhaps a step later (by a year or two) than the U.S. and China. Impressivel Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

ISC 2023 Booth Videos

Cornelis Networks @ ISC23
Dell Technologies @ ISC23
Intel @ ISC23
Lenovo @ ISC23
ISC23 Playlist
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire