New Method That Can Simulate Nanoelectronics Earns Researchers Gordon Bell Prize Nomination

September 18, 2019

September 18, 2019 — Chip manufacturers are already assembling transistors that measure just a few nanometres across. They are much smaller than a human hair, whose diameter is approximately 20,000 nanometres in the case of finer strands. Now, demand for increasingly powerful supercomputers is driving the industry to develop components that are even smaller and yet more powerful at the same time.

Nomination for the Gordon Bell Prize

However, in addition to physical laws that make it harder to build ultra-scaled transistors, the problem of the ever increasing heat dissipation is putting manufacturers in a tricky situation – partly due to steep rises in cooling requirements and the resulting demand for energy. Cooling the computers already accounts for up to 40 percent of power consumption in some data centres, as the research groups led by ETH professors Torsten Hoefler and Mathieu Luisier report in their latest study, which they hope will allow a better approach to be developed. With their study, the researchers are now nominated for the ACM Gordon Bell Prize, the most prestigious prize in the area of supercomputers, which is awarded annually at the SC supercomputing conference in the United States.

To make today’s nanotransistors more efficient, the research group led by Luisier from the Integrated Systems Laboratory (IIS) at ETH Zurich simulates transistors using software named OMEN, which is a so-called quantum transport simulator.  OMEN runs its calculations based on what is known as density functional theory (DFT), allowing a realistic simulation of transistors in atomic resolution and at the quantum mechanical level. This simulation visualises how electrical current flows through the nanotransistor and how the electrons interact with crystal vibrations, thus enabling researchers to precisely identify locations where heat is produced. In turn, OMEN also provides useful clues as to where there is room for improvement.

Improving transistors using optimised simulations

Until now, conventional programming methods and supercomputers only permitted researchers to simulate heat dissipation in transistors consisting of around 1,000 atoms, as data communication between the processors and memory requirements made it impossible to produce a realistic simulation of larger objects. Most computer programs do not spend most of their time performing computing operations, but rather moving data between processors, main memory and external interfaces. According to the scientists, OMEN also suffered from a pronounced bottleneck in communication, which curtailed performance. “The software is already used in the semiconductor industry, but there is considerable room for improvement in terms of its numerical algorithms and parallelisation,” says Luisier.

Until now, the parallelization of OMEN was designed according to the physics of the electro-thermal problem, as Luisier explains. Now, Ph.D. student Alexandros Ziogas and the postdoc Tal Ben-Nun – working under Hoefler, head of the Scalable Parallel Computing Laboratory at ETH Zurich – have not looked at the physics but rather at the dependencies between the data. They reorganised the computing operations according to these dependencies, effectively without considering the underlying physics. In optimising the code, they had the help of two of the most powerful supercomputers in the world – “Piz Daint” at the Swiss National Supercomputing Centre (CSCS) and “Summit” at Oak Ridge National Laboratory in the US, the latter being the fastest supercomputer in the world. According to the researchers, the resulting code – dubbed DaCe OMEN – produced simulation results that were just as precise as those from the original OMEN software.

For the first time, DaCe OMEN has reportedly made it possible for researchers to produce a realistic simulation of transistors ten times the size, made up of 10,000 atoms, on the same number of processors – and up to 14 times faster than the original method took for 1,000 atoms. Overall, DaCe OMEN is more efficient than OMEN by two orders of magnitude: on Summit, it was possible to simulate, among other things, a realistic transistor up to 140 times faster with a sustained performance of 85.45 petaflops per second – and indeed to do so in double precision on 4,560 computer nodes. This extreme boost in computing speed has earned the researchers a nomination for the Gordon Bell Prize.

Data-centric programming

The scientists achieved this optimisation by applying the principles of data-centric parallel programming (DAPP), which was developed by Hoefler’s research group. Here, the aim is to minimise data transport and therefore communication between the processors. “This type of programming allows us to very accurately determine not only where this communication can be improved on various levels of the program, but also how we can tune specific computing-intensive sections, known as computational kernels, within the calculation for a single state,” says Ben-Nun. This multilevel approach makes it possible to optimise an application without having to rewrite it every time. Data movements are also optimised without modifying the original calculation – and for any desired computer architecture. “When we optimise the code for the target architecture, we’re now only changing it from the perspective of the performance engineer, and not that of the programmer – that is, the researcher who translates the scientific problem into code,” says Hoefler. This, he says, leads to the establishment of a very simple interface between computer scientists and interdisciplinary programmers.

The application of DaCe OMEN has shown that the most heat is generated near the end of the nanotransistor channel and revealed how it spreads from there and affects the whole system. The scientists are convinced that the new process for simulating electronic components of this kind has a variety of potential applications. One example is in the production of lithium batteries, which can lead to some unpleasant surprises when they overheat.

Data-centric programming is an approach that ETH Professor Torsten Hoefler has been pursuing for a number of years with a goal of putting the power of supercomputers to more efficient use. In 2015, Hoefler received an ERC Starting Grant for his project, Data Centric Parallel Programming (DAPP).

Reference:

Ziogas AN, Ben-Nun T, FernándezGI, Schneider T, Luisier M & Hoefler T: A Data-Centric Approach to Extreme-Scale Ab initio Dissipative Quantum Transport Simulations, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC19), November 2019.


Source: Simone Ulmer, CSCS – Swiss National Supercomputing Centre

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire