New Simulation Reveals Secrets of Exotic Form of Electrons Called Polarons

March 22, 2023

March 22, 2023 — A new leaf has turned in scientists’ hunt for developing cutting-edge materials used in organic light-emitting diode (OLED) TV’s, touchscreens, and more. The advance involves the polaron, a quasiparticle consisting of an electron and its surrounding distortions of atoms in a crystal lattice.

Scientists have characterized for the first time in a large system of 9,000 atoms in 2D materials the fundamental properties of quasiparticles called polarons, a quantum wave packet consisting of an electron “dressed” by a cloud of atomic vibrations. This advance in polaron research can help improve development of touchscreens for phones and tablets, organic light-emitting diodes for TVs, hydrogen fuel generation from photocatalysis, and more. Isosurface plot of the hole polaron density for bulk h-BN for a 24 × 24 × 8 supercell (9,216 atoms). Credit: Giustino et al.

Simulations on the Texas Advanced Computing Center’s (TACC) Frontera supercomputer have helped scientists map for the first time the conditions that characterize polarons in 2D materials, the thinnest materials that have ever been made.

“We charted a map to indicate in which materials polarons should be found, under what conditions, and the characteristics of their properties,” said Feliciano Giustino, professor of Physics and the W. A. ‘Tex’ Moncrief, Jr. Chair of Quantum Materials Engineering at the Oden Institute for Computational Engineering and Sciences (Oden Institute) and the Department of Physics, College of Natural Sciences, The University of Texas at Austin.

Understanding polarons can help improve the performance and efficiency of devices such as touchscreens for phones and tablets, and the organic light-emitting diodes of OLED TVs, which rely on electric charge transport through polarons.

What’s more, generating hydrogen fuel from the splitting of water by sunlight is considered the ‘holy grail’ of energy science, a process which can be achieved through charge transport from polarons in key materials such as titanium dioxide.

Giustino is the lead author on work published February 2023 in Nature Physics. In it, he and study co-author Weng Hong Sio of the Oden Institute and the University of Macau determined the fundamental properties of polarons in 2D materials using quantum mechanical theory and computation.

Little has been known about polarons in 2D materials, until now. Polarons have been well-studied theoretically over the past 100 years, and characterized experimentally for three-dimensional bulk solids.

A rendering of a hole polaron in hexagonal boron nitride. The white and blue spheres represent boron and nitrogen atoms, respectively, the orange isosurface is the hole polaron in a single boron nitride layer that is being exfoliated. Hole polarons in single-layer boron nitride are localized wave packets extending over approximately 1 nm. Credit: F. Giustino.

Giustino and Sio focused on atomically-thin crystal monolayers of hexagonal boron nitride (h-BN) on graphene as a case study, where polarons were computed and compared in the bulk crystal and in the monolayer. Next, they created a generalized model of polarons in 2D materials.

“Our aim was to understand where one can find polarons in two dimensions, and what are their properties. To do this, we used a new computational method that we developed,” Giustino said.

Giustino at the Oden Institute invented EPW, an open-source Fortran and message passing interface (MPI) code that calculates properties related to electron-phonon interaction using Density-Functional Perturbation Theory and Maximally Localized Wannier Functions. This code is currently developed by an international collaboration led by the Oden Institute.

“We used supercomputers to perform the calculations, primarily those of DOE (Argonne Leadership Computing Facility and National Energy Research Scientific Computing) as well as Frontera at TACC. EPW is something that we optimized very heavily on Frontera,” Giustino said.

During TACC’s Texascale Days, Giustino was awarded access to the full machine, allowing his group to perform full system runs on all 448,000 CPU cores of Frontera.

“Thanks to DOE support, we’ve been refactoring the EPW for exascale computing over the past 4 years,” Giustino said. “TACC’s Frontera supercomputer has helped us with this effort. We managed to refactor the EPW code to achieve 92% of ideal scaling. The ability to access the entire machine within Texascale Days has been absolutely critical to bring us to where we are now with the code.”

Feliciano Giustino, Oden Institute, UT Austin

TACC’s Frontera supercomputer, funded by the National Science Foundation (NSF), is the most powerful academic system in the U.S. Frontera’s Characteristic Science Applications (CSA) program is part of the planning and early science program for the NSF’s Leadership-Class Computing Facility (LCCF), which will be 10 times as powerful as Frontera.

“TACC provided us with the opportunity to develop the codes on full scale systems that has not been possible anywhere else,” Giustino said.

His EPW code is one of 21 CSA projects selected by TACC to be benchmarked and optimized for the LCCF — these latest polaron simulations are linked with Giustino’s CSA project.

What’s more, Giustino continues his strong collaboration with TACC through a recent grant to develop software to design new materials, awarded from the NSF Office for Advanced Cyberinfrastructure through the Cyberinfrastructure for Sustained Scientific Innovation (CSSI) program. The grant will fund the development of software to design new materials.

The Department of Energy (DOE) funded Giustino’s latest work with polarons under the DOE Office of Science, Basic Energy Sciences, Computational Materials Sciences award no. DE-SC0020129.

“The National Energy Research Scientific Computing Center (NERSC) has provided the main resources that we use for this DOE project. We ran a significant fraction of our calculations on the Cori and Perlmutter supercomputers at NERSC,” Giustino said.

The calculations pertain to the formation energies, wave functions, and atomic displacements of polarons, a quantum wave packet consisting of an electron “dressed” by a cloud of atomic vibrations.

Electrons alone behave like delocalized waves, and polarons behave differently in that the wave packet jumps from one lattice site to another. “This ‘hopping transport’ regime confers the material with novel properties and has implications on the design of materials for electronics,” Giustino said.

The packet extends over 10 nanometers, encompassing about 30,000 atoms of boron and nitrogen, considering all the interactions between atoms. This kind of calculation isn’t possible currently using standard density functional theory methods.

“We recast this problem into the solution of a very large nonlinear eigenvalue problem. Then we used supercomputers to solve this gigantic linear algebra problem,” Giustino said.

“We believe that with these new methods that we developed through the EPW code, we are now capitalizing on and supporting experimental data and see new directions in materials design,” he added.

Said Giustino: “The materials that we know today are just a tiny fraction of what is possible. Supercomputers are key to exploring this valuable and gigantic space without having to first invest billions into experimental synthesis and material characterization. Computation gives scientists a first pass to more easily see what is possible, something which I strongly advocate for and want the U.S. to maintain leadership in materials research through sustained support for high performance computing.”

Fröhlich polaron in monolayer h-BN. (a) Valence band structure of monolayer h-BN. The Fourier amplitudes of the hole polaron wavefunction are superimposed to the bands as circles with radii proportional to ∣Ank∣2. (b) Phonon dispersion relations of monolayer h-BN. The Fourier amplitudes of the polaronic distortion are superimposed to the bands as circles with radii proportional to ∣Bqν∣2. (c) Top view of the hole polaron density ∣ψ(r)∣2 for monolayer h-BN for a 26 × 26 × 1 supercell (676 atoms) and 1D profile obtained as the planar average along the axis perpendicular to the monolayer. (d) Side view of the hole polaron density and 1D profile obtained as a slice along a line passing through the center of the polaron. Credit: Giustino et al.

Source: Jorge Salazar, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire