New Spin Control Method Brings Billion-Qubit Quantum Chips Closer

January 17, 2023

Jan. 17, 2023 — UNSW Sydney engineers have discovered a new way of precisely controlling single electrons nestled in quantum dots that run logic gates. The new mechanism is also less bulky and requires fewer parts, which could prove essential to making large-scale silicon quantum computers a reality.

Illustration showing how multiple qubits might be controlled using the new ‘intrinsic spin-orbit EDSR’ process. Credit: Tony Melov.

The serendipitous discovery, made by engineers at the quantum computing start-up Diraq and UNSW, is detailed in the journal Nature Nanotechnology.

“This was a completely new effect we’d never seen before, which we didn’t quite understand at first,” said lead author Dr. Will Gilbert, a quantum processor engineer at Diraq, a UNSW spin-off company based at its Kensington campus. “But it quickly became clear that this was a powerful new way of controlling spins in a quantum dot. And that was super exciting.”

Logic gates are the basic building block of all computation. They allow ‘bits’ – or binary digits (0s and 1s) – to work together to process information. However, a quantum bit (or qubit) exists in both of these states at once – a condition known as a ‘superposition’. This allows a multitude of computation strategies – some exponentially faster, some operating simultaneously – that are beyond classical computers. Qubits themselves are made up of ‘quantum dots’ – tiny nanodevices which can trap one or a few electrons. Precise control of the electrons is necessary for computation to occur.

Using Electric Rather Than Magnetic Fields

While experimenting with different geometrical combinations of devices just billionths of a meter in size that control quantum dots, along with various types of minuscule magnets and antennas that drive their operations, Dr. Tuomo Tanttu from UNSW Engineering stumbled across a strange effect.

“I was trying to really accurately operate a two-qubit gate, iterating through a lot of different devices, slightly different geometries, different materials stacks and different control techniques,” said Dr. Tanttu, who is also a measurement engineer at Diraq. “Then this strange peak popped up. It looked like the rate of rotation for one of the qubits was speeding up, which I’d never seen in four years of running these experiments.”

What he had discovered, the engineers later realized, was a new way of manipulating the quantum state of a single qubit by using electric fields, rather than the magnetic fields they had been using previously. Since the discovery was made in 2020, the engineers have been perfecting the technique – which has become another tool in their arsenal to fulfill Diraq’s ambition of building billions of qubits on a single chip.

“This is a new way to manipulate qubits, and it’s less bulky to build – you don’t need to fabricate cobalt micro-magnets or an antenna right next to the qubits to generate the control effect,” said Dr. Gilbert. “It removes the requirement of placing extra structures around each gate. So, there’s less clutter.”

Controlling single electrons without disturbing others nearby is essential for quantum information processing in silicon. There are two established methods: electron spin resonance (ESR) using an on-chip microwave antenna, and electric dipole spin resonance (EDSR), which relies on an induced gradient magnetic field. The newly discovered technique is known as ‘intrinsic spin-orbit EDSR’.

“Normally, we design our microwave antennas to deliver purely magnetic fields,” said Dr. Tanttu. “But this particular antenna design generated more of an electric field than we wanted – but that turned out to be lucky, because we discovered a new effect we can use to manipulate qubits. That’s serendipity for you.”

Building on Making Quantum Computing in Silicon a Reality

“This is a gem of a new mechanism, which just adds to the trove of proprietary technology we’ve developed over the past 20 years of research,” said Professor Andrew Dzurak, Scientia Professor in Quantum Engineering at UNSW and CEO and founder of Diraq. Professor Dzurak led the team that built the first quantum logic gate in silicon in 2015.

“It builds on our work to make quantum computing in silicon a reality, based on essentially the same semiconductor component technology as existing computer chips, rather than relying on exotic materials.

The research team: Professor Andrew Dzurak, Dr. Will Gilbert and Dr. Tuomo Tanttu. Credit: Grant Turner.

“Since it’s based on the same CMOS technology as today’s computer industry, our approach will make it easier and faster to scale up for commercial production and achieve our goal of fabricating billions of qubits on a single chip.”

CMOS (or complementary metal-oxide-semiconductor, pronounced “see-moss”) is the fabrication process at the heart of modern computers. It’s used for making all sorts of integrated circuit components – including microprocessors, microcontrollers, memory chips and other digital logic circuits, as well as analogue circuits such as image sensors and data converters.

Building a quantum computer has been called the ‘space race of the 21st century’ – a difficult and ambitious challenge with the potential to deliver revolutionary tools for tackling otherwise impossible calculations, such as the design of complex drugs and advanced materials, or the rapid search of massive, unsorted databases.

“We often think of landing on the Moon as humanity’s greatest technological marvel,” said Professor Dzurak. “But the truth is, today’s CMOS chips – with billions of operating devices integrated together to work like a symphony, and that you carry in your pocket – that’s an astounding technical achievement and one that’s revolutionized modern life. Quantum computing will be equally astonishing.”


Source: UNSW Sydney

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Touts Strong Results on Financial Services Inference Benchmark

February 3, 2023

The next-gen Hopper family may be on its way, but that isn’t stopping Nvidia’s popular A100 GPU from leading another benchmark on its way out. This time, it’s the STAC-ML inference benchmark, produced by the Securi Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnerships in strategic technologies and defense industries across th Read more…

Pittsburgh Supercomputing Enables Transparent Medicare Outcome AI

February 2, 2023

Medical applications of AI are replete with promise, but stymied by opacity: with lives on the line, concerns over AI models’ often-inscrutable reasoning – and as a result, possible biases embedded in those models Read more…

Europe’s LUMI Supercomputer Has Officially Been Accepted

February 1, 2023

“LUMI is officially here!” proclaimed the headline of a blog post written by Pekka Manninen, director of science and technology for CSC, Finland’s state-owned IT center. The EuroHPC-organized supercomputer’s most Read more…

AWS Solution Channel

Shutterstock 2069893598

Cost-effective and accurate genomics analysis with Sentieon on AWS

This blog post was contributed by Don Freed, Senior Bioinformatics Scientist, and Brendan Gallagher, Head of Business Development at Sentieon; and Olivia Choudhury, PhD, Senior Partner Solutions Architect, Sujaya Srinivasan, Genomics Solutions Architect, and Aniket Deshpande, Senior Specialist, HPC HCLS at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1453953692

Microsoft and NVIDIA Experts Talk AI Infrastructure

As AI emerges as a crucial tool in so many sectors, it’s clear that the need for optimized AI infrastructure is growing. Going beyond just GPU-based clusters, cloud infrastructure that provides low-latency, high-bandwidth interconnects and high-performance storage can help organizations handle AI workloads more efficiently and produce faster results. Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for more computing specifically targeted at artificial intellige Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnership Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for Read more…

Roadmap for Building a US National AI Research Resource Released

January 31, 2023

Last week the National AI Research Resource (NAIRR) Task Force released its final report and roadmap for building a national AI infrastructure to include comput Read more…

PFAS Regulations, 3M Exit to Impact Two-Phase Cooling in HPC

January 27, 2023

Per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals,” pose a number of health risks to humans, with more suspected but not yet confirmed Read more…

Multiverse, Pasqal, and Crédit Agricole Tout Progress Using Quantum Computing in FS

January 26, 2023

Europe-based quantum computing pioneers Multiverse Computing and Pasqal, and global bank Crédit Agricole CIB today announced successful conclusion of a 1.5-yea Read more…

Critics Don’t Want Politicians Deciding the Future of Semiconductors

January 26, 2023

The future of the semiconductor industry was partially being decided last week by a mix of politicians, policy hawks and chip industry executives jockeying for Read more…

Riken Plans ‘Virtual Fugaku’ on AWS

January 26, 2023

The development of a national flagship supercomputer aimed at exascale computing continues to be a heated competition, especially in the United States, the Euro Read more…

Leading Solution Providers

Contributors

SC22 Booth Videos

AMD @ SC22
Altair @ SC22
AWS @ SC22
Ayar Labs @ SC22
CoolIT @ SC22
Cornelis Networks @ SC22
DDN @ SC22
Dell Technologies @ SC22
HPE @ SC22
Intel @ SC22
Intelligent Light @ SC22
Lancium @ SC22
Lenovo @ SC22
Microsoft and NVIDIA @ SC22
One Stop Systems @ SC22
Penguin Solutions @ SC22
QCT @ SC22
Supermicro @ SC22
Tuxera @ SC22
Tyan Computer @ SC22
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire