New SQMS Study Uncovers Impurities in a Qubit

February 17, 2022

Feb. 17, 2022 — When it comes to developing quantum computers and harnessing quantum information, scientists require a complete understanding of the materials that make up superconducting qubits, or quantum bits, the core component of a quantum computer that holds information. Scientists at the U.S. Department of Energy’s Fermi National Accelerator Laboratory, along with collaborators such as Rigetti Computing and the National Institute of Standards and Technology, have used a new technique to identify impurities within physical qubits that can limit the lifespan of quantum information.

Daniel Bafia examines the TOF-SIMS equipment located in a material science laboratory at Fermilab. Use of this equipment has allowed SQMS researchers to study impurities in superconducting qubits at the part per million level. Credit: SQMS Center

Quantum decoherence is the phenomenon where noise originating from various factors can limit the lifespan over which quantum information can be stored. This phenomenon adversely affects the performance of quantum computers, which rely on quantum information to perform calculations. When scientists successfully build qubits less impacted by sources of quantum decoherence, the power of quantum computers will be unlocked, and scientists will have a new tool to perform calculations difficult or impossible for classical computers to solve.

Quantum computers are designed to solve problems that require large amounts of memory, and through the use of a quantum mechanical property called superposition, these computers will be able to analyze systems that contain large amounts of data, such as traffic patterns, weather predictions, financial modeling and much more.

“In superconducting qubits, we’ve long wondered what underlying materials properties affect the performance of quantum computers,” said Josh Mutus, director of quantum materials at Rigetti Computing. “Now SQMS researchers have been able to examine Rigetti devices with high-precision analytical equipment in order to uncover potential defect systems that we were never able to explore before.”

Impurities found within materials that comprise superconducting qubits can be attributed to causing quantum decoherence, which scientists at the Fermilab-led Superconducting Quantum Materials and Systems Center have highlighted in a paper published in the Applied Physics Letters journal.

3D representation of hydrocarbon impurity distribution in superconducting qubit samples provided through TOF-SIMS analysis. Credit: SQMS Center

Through a three-dimensional analysis of the qubit at the atomic level, scientists revealed impurities that include elements such as oxygen, hydrogen, carbon, chlorine, fluorine, sodium, magnesium and calcium.

To uncover these impurities, scientists use a device called the TOF-SIMS, or time-of-flight secondary ion mass spectrometer, to rapidly fire ions at a qubit and chip away at it. The ions chipped from the qubit’s surface are analyzed in a sensor in the instrument where the constituent elements can be identified with part per million accuracies.

“Our initial goal, as part of the center, was to identify precisely what is within a qubit sample in terms of impurities and defects. Once we have access to that information, we are then in a solid position to build strategies to remove these impurities and boost performance,” said Akshay Murthy, the primary author of this publication and research associate at the SQMS Center. “This is the sort of information that we need to move to the next step.”

The TOF-SIMS instrument was originally purchased for the superconducting radio frequency research program at Fermilab to identify impurities in accelerator cavities used to push particles in a particle accelerator. Now, for the very first time, the TOF-SIMS device has been used to analyze qubits. Impurities in the materials that make up accelerator cavities also impact performance, which makes this instrument applicable for SQMS scientists who are also identifying impurities in materials that compromise or help other superconducting technologies.

“The tools needed to perform this characterization are not only specialized and expensive, but also require experienced scientists to acquire and analyze the data,” said Anthony McFadden, a qubit fabrication expert at NIST. “The collaborations formed within SQMS take advantage of specialized equipment and expertise in place at Fermilab and institutions around the country.”

The TOF-SIMS identifies atoms from the top level and etches away downward through the qubit, generating a three-dimensional profile of the elements and compounds that comprise the qubit and identifying where and what type of impurities are present.

“This work has illuminated some often-overlooked sources of decoherence commonly formed during device-processing,” said McFadden.

Qubits can be made by depositing a layer of superconducting niobium on silicon. Scientists vaporize the niobium into a gas, and just as water vapor forms ice on cold metal during the winter, niobium solidifies and forms a film on top of the silicon.

Murthy said that the original chamber for integrating the niobium, or the configuration of the niobium atoms on the film, might contribute to impurities on the qubit. Analysis from the TOF-SIMS can be used to refine the process for creating qubits from a materials and method point of view.

DOE Chief Commercialization Officer and Director of the Office of Technology Transfers Vanessa Chan tours Fermilab with James Fritz (right), senior advisor for OTTE and Fermilab Chief Technology Officer Alex Romanenko (center). During the visit, the group spoke with Akshay Murthy (left) and Daniel Bafia regarding materials research, use of the TOF-SIMS equipment and technology transfer opportunities within SQMS. Credit: SQMS Center

The TOF-SIMS setup at Fermilab not only identifies impurities, but it also has a treatment chamber used to heat different materials and change parameters to help scientists study the qubit’s chemical composition and furthermore, mimic fabrication processes.

“By having access to this additional treatment chamber, we can now perform a treatment and then directly analyze and assess its impact on the structure and resultant properties of the sample,” said Murthy.

The next steps are to quantify the effects of sources of decoherence and to engineer processes that avoid these effects altogether.

“Through analyzing qubits with our TOF-SIMS setup, we are now able to examine each step in the fabrication process to identify when impurities become present,” said Alexander Romanenko, Fermilab’s chief technology officer and head of the Applied Physics and Superconducting Technology Division. “Fermilab is the world expert on superconducting technologies for particle accelerators, and through sharing facilities and expertise at the lab with our SQMS partners, we hope to play an integral role in providing the world with the next leap in computing. Our facilities allow us to conduct world-class research on the materials that further the field of quantum information sciences.”

The Superconducting Quantum Materials and Systems Center is one of the five U.S. Department of Energy National Quantum Information Science Research Centers. Led by Fermi National Accelerator Laboratory, SQMS is a collaboration of 21 partner institutions—national labs, academia and industry—working together to bring transformational advances in the field of quantum information science. The center leverages Fermilab’s expertise in building complex particle accelerators to engineer multiqubit quantum processor platforms based on state-of-the-art qubits and superconducting technologies. Working hand in hand with embedded industry partners, SQMS will build a quantum computer and new quantum sensors at Fermilab, which will open unprecedented computational opportunities. For more information, please visit https://sqms.fnal.gov.

Fermi National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Source: Hannah AdamsMaxwell Bernstein, Fermilab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire