New Study Demonstrates Key Components for a Qutrit-Based Quantum Computer

April 27, 2021

April 27, 2021 — A team led by physicists at Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley has successfully observed the scrambling of quantum information, which is thought to underlie the behavior of black holes, using qutrits: information-storing quantum units that can represent three separate states at the same time. Their efforts also pave the way for building a quantum information processor based upon qutrits.

The black hole information paradox

The new study, recently published in the journal Physical Review X, makes use of a quantum circuit that is inspired by the longstanding physics question: What happens to information when it enters a black hole?

Beyond the connection to cosmology and fundamental physics, the team’s technical milestones that made the experiment possible represent important progress toward using more complex quantum processors for quantum computing, cryptography, and error detection, among other applications.

While black holes are considered one of the most destructive forces in the universe – matter and light cannot escape their pull, and are quickly and thoroughly scrambled once they enter – there has been considerable debate about whether and how information is lost after passing into a black hole.

The experimental quantum computing setup at the Advanced Quantum Testbed. (Credit: Berkeley Lab)

The late physicist Stephen Hawking showed that black holes emit radiation – now known as Hawking radiation – as they slowly evaporate over time. In principle, this radiation could carry information about what’s inside the black hole – even allowing the reconstruction of information that passes into the black hole.

And by using a quantum property known as entanglement, it is possible to perform this reconstruction significantly more rapidly, as was shown in earlier work.

Quantum entanglement defies the rules of classical physics, allowing particles to remain correlated even when separated by large distances so that the state of one particle will inform you about the state of its entangled partner. If you had two entangled coins, for example, knowing that one coin came up heads when you looked at it would automatically tell you that the other entangled coin was tails, for example.

Most efforts in quantum computing seek to tap into this phenomenon by encoding information as entangled quantum bits, known as qubits (pronounced CUE-bits). Like a traditional computer bit, which can hold the value of zero or one, a qubit can also be either a zero or one. But in addition, a qubit can exist in a superposition that is both one and zero at the same time. In the case of a coin, it’s like a coin flip that can represent either heads or tails, as well as the superposition of both heads and tails at the same time.

The power of 3: Introducing qutrits

Each qubit you add to a quantum computer doubles its computing power, and that exponential increase soars when you use quantum bits capable of storing more values, like qutrits (pronounced CUE-trits). Because of this, it takes far fewer qubits and even fewer qutrits or qudits – which describes quantum units with three or more states – to perform complex algorithms capable of demonstrating the ability to solve problems that cannot be solved using conventional computers.

That said, there are a number of technical hurdles to building quantum computers with a large number of quantum bits that can operate reliably and efficiently in solving problems in a truly quantum way.

In this latest study, researchers detail how they developed a quantum processor capable of encoding and transmitting information using a series of five qutrits, which can each simultaneously represent three states. And despite the typically noisy, imperfect, and error-prone environment of quantum circuity, they found that their platform proved surprisingly resilient and robust.

Qutrits can have a value of zero, one, or two, holding all of these states in superposition. In the coin analogy, it’s like a coin that has the possibility of coming up as heads, tails, or in landing on its thin edge.

“A black hole is an extremely good encoder of information,” said Norman Yao, a faculty scientist in Berkeley Lab’s Materials Sciences Division and an assistant professor of physics at UC Berkeley who helped to lead the planning and design of the experiment. “It smears it out very quickly, so that any local noise has an extremely hard time destroying this information.”

But, he added, “The encoder is so darn good that it’s also very hard to decode this information.”

An illustration of a thought experiment in which information dropped into a black hole by Alice is recovered by an outside observer Bob. (Credit: Berkeley Lab)

Creating an experiment to mimic quantum scrambling

The team set out to replicate the type of rapid quantum information smearing, or scrambling, in an experiment that used tiny devices called nonlinear harmonic oscillators as qutrits. These nonlinear harmonic oscillators are essentially sub-micron-sized weights on springs that can be driven at several distinct frequencies when subjected to microwave pulses.

A common problem in making these oscillators work as qutrits, though, is that their quantum nature tends to break down very quickly via a mechanism called decoherence, so it is difficult to distinguish whether the information scrambling is truly quantum or is due to this decoherence or other interference, noted Irfan Siddiqi, the study’s lead author.

Siddiqi is director of Berkeley Lab’s Advanced Quantum Testbed, a faculty scientist in the Lab’s Computational Research and Materials Sciences divisions, and a professor of physics at UC Berkeley.

The testbed, which began accepting proposals from the quantum science community in 2020, is a collaborative research laboratory that provides open, free access to users who want to explore how superconducting quantum processors can be used to advance scientific research. The demonstration of scrambling is one of the first results from the testbed’s user program.

“In principle, an isolated black hole exhibits scrambling,” Siddiqi said, “but any experimental system also exhibits loss from decoherence. In a laboratory, how do you distinguish between the two?”

A key to the study was in preserving the coherence, or orderly patterning, of the signal carried by the oscillators for long enough to confirm that quantum scrambling was occurring via the teleportation of a qutrit. While teleportation may conjure up sci-fi imagery of “beaming up” people or objects from a planet’s surface onto a spaceship, in this case there is only the transmission of information – not matter – from one location to another via quantum entanglement.

Another essential piece was the creation of customized logic gates that enable the realization of “universal quantum circuits,” which can be used to run arbitrary algorithms. These logic gates allow pairs of qutrits to interact with each other and were designed to handle three different levels of signals produced by the microwave pulses.

One of the five qutrits in the experiment served as the input, and the other four qutrits were in entangled pairs. Because of the nature of the qutrits’ entanglement, a joint measurement of one of the pairs of qutrits after the scrambling circuit ensured that the state of the input qutrit was teleported to another qutrit.

Mirrored black holes and wormholes

The researchers used a technique known as quantum process tomography to verify that the logic gates were working and that the information was properly scrambled, so that it was equally likely to appear in any given part of the quantum circuit.

Siddiqi said that one way to think about how the entangled qutrits transmit information is to compare it to a black hole. It’s as if there is a black hole and a mirrored version of that black hole, so that information passing in one side of the mirrored black hole is transmitted to the other side via entanglement.

Looking forward, Siddiqi and Yao are particularly interested in tapping into the power of qutrits for studies related to traversable wormholes, which are theoretical passages connecting separate locations in the universe, for example.

A scientist from the Perimeter Institute for Theoretical Physics in Canada also participated in the study, which received supported from the U.S. Department of Energy’s Office of Advanced Scientific Computing Research and Office of High Energy Physics; and from the National Science Foundation’s Graduate Research Fellowship.

About the Lawrence Berkeley National Laboratory

Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 14 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy’s Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.


Source: Glenn Roberts Jr., Berkeley Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket for an optional 8087 math coprocessor. The math coprocessor ma Read more…

IonQ Reports Advance on Path to Networked Quantum Computing

February 22, 2024

IonQ reported reaching a milestone in its efforts to use entangled photon-ion connectivity to scale its quantum computers. IonQ’s quantum computers are based on trapped ions which feature long coherence times and qubit Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Apple. Today the consumer electronics giant started rolling Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to derive any substantial value from it. However, the GenAI hyp Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performance Benchmarks – that builds on earlier work and is an eff Read more…

AWS Solution Channel

Shutterstock 2283618597

Deep-dive into Ansys Fluent performance on Ansys Gateway powered by AWS

Today, we’re going to deep-dive into the performance and associated cost of running computational fluid dynamics (CFD) simulations on AWS using Ansys Fluent through the Ansys Gateway powered by AWS (or just “Ansys Gateway” for the rest of this post). Read more…

Atom Computing Reports Advance in Scaling Up Neutral Atom Qubit Arrays

February 15, 2024

The scale-up challenge facing quantum computing (QC) is daunting and varied. It’s commonly held that 1 million qubits (or more) will be needed to deliver practical fault tolerant QC. It’s also a varied challenge beca Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performa Read more…

The Pulse of HPC: Tracking 4.5 Million Heartbeats of 3D Coronary Flow

February 15, 2024

Working in Duke University's Randles Lab, Cyrus Tanade, a National Science Foundation graduate student fellow and Ph.D. candidate in biomedical engineering, is Read more…

It Doesn’t Get Much SWEETER: The Winter HPC Computing Festival in Corpus Christi

February 14, 2024

(Main Photo by Visit Corpus Christi CrowdRiff) Texas A&M University's High-Performance Research Computing (HPRC) team hosted the "SWEETER Winter Comput Read more…

Q-Roundup: Diraq’s War Chest, DARPA’s Bet on Topological Qubits, Citi/Classiq Explore Optimization, WEF’s Quantum Blueprint

February 13, 2024

Yesterday, Australian start-up Diraq added $15 million to its war chest (now $120 million) to build a fault tolerant computer based on quantum dots. Last week D Read more…

2024 Winter Classic: Razor Thin Margins in HPL/HPCG

February 12, 2024

The first task for the 11 teams in the 2024 Winter Classic student cluster competition was to run and optimize the LINPACK and HPCG benchmarks. As usual, the Read more…

2024 Winter Classic: We’re Back!

February 9, 2024

The fourth edition of the Winter Classic Invitational Student Cluster Competition is up and running. This year, we have 11 teams of eager students representin Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire