NIH Awards $1.26M to Kitware and Collaborators for Cancer Treatment Research

August 20, 2015

The research project is centered on a novel approach to cancer detection and diagnosis that is based on using acoustic angiography to measure small changes in the microvessels that feed tumors. Acoustic angiography is a contrast-enhanced ultrasound imaging technique that is being developed by Dr. Paul Dayton at The University of North Carolina at Chapel Hill (UNC), who is a principal investigator on the project. The technique can provide unprecedented clarity in visualizing microvascular abnormalities associated with malignant cancers that resolve when those cancers respond to treatment. Although acoustic angiography is promising, manually measuring the microvessel changes that it reveals can be time consuming and prone to error. For the research project, acoustic angiography is combined with automated vessel modeling and computer-aided diagnosis methods developed at Kitware to provide a low-cost, fast, and accurate cancer treatment monitoring system.

“The characterization of microvascular features for the diagnosis and monitoring of cancer has shown great promise, but the application of this technique has traditionally involved costly imaging equipment and highly constrained conditions,” Dr. Stephen Aylward, a principal investigator on the project and Senior Director of Medical Research at Kitware, said. “Combining computer-aided diagnosis of microvasculature with acoustic angiography creates a powerful and practical diagnostic tool for preclinical and clinical cancer research.”

During Phase I of the project, Kitware and the Dayton Lab at UNC confirmed that the novel ultrasound-based approach can distinguish benign tumors from malignant tumors and track vascular changes throughout disease development. The team also optimized the methods for modeling and analyzing vessels so that they run in minutes, rather than hours, and offer significantly improved accuracy.

For Phase II, the team will partner with SonoVol to integrate the proposed approach into a commercial ultrasound imaging system for preclinical research. The system will provide cancer researchers with an innovative tool for studying animal models of malignancies in nearly any organ in the body. It will enable rapid alignment of images taken over time for observing longitudinal vascular remodeling and present substantial benefits over existing technologies. For example, the system will cost less than half of what traditional systems cost; it will be suitable for users who do not have expertise in imaging physics; and it will be benchtop, user agnostic, and noninvasive.

“An equivalently fast, accurate, noninvasive, low-cost, and quantitative tumor micro-environment imaging instrument does not exist,” Aylward said. “As a result, most researchers have to reserve time and expert support on shared instruments at facilities that charge extremely high fees. The proposed system will provide affordable and easy-to-use technology that could accelerate the pace of cancer research, bringing life-saving therapeutics to the patient’s bedside sooner and with a lower development cost.”

As part of the Phase II effort, Kitware will release algorithms for vessel modeling and analysis as open-source software, building on the Insight Segmentation and Registration Toolkit (ITK) and the 3D Slicer application for medical data visualization. Both ITK and 3D Slicer are freely available. They are developed and supported by Kitware and are used in medical image analysis research and commercial products throughout the world.

In addition to participating in the collaborative research effort, Kitware provides consulting services to groups that seek to build commercial systems using ITK and 3D Slicer, as well as Kitware’s expertise in low-cost ultrasound applications, vessel quantification, and other medical technologies. To learn more about leveraging Kitware’s expertise, please contact Stephen Aylward at kitware(at)kitware.com.

About Kitware 

Kitware is an advanced technology, research, and open-source solutions provider for research facilities, government institutions, and corporations worldwide. Founded in 1998, Kitware specializes in research and development in the areas of HPC and visualization, medical imaging, computer vision, data and analytics, and quality software process. Among its services, Kitware offers consulting and support for high-quality software solutions. Kitware is headquartered in Clifton Park, NY, with offices in Carrboro, NC; Santa Fe, NM; and Lyon, France. More information can be found on http://www.kitware.com.

Source: Kitware

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This