Nine UW Projects Awarded Summer Use of Supercomputer in Cheyenne

June 29, 2016

June 29 — Nine projects, a number of which have applications to atmospheric science issues, were recently chosen to receive computational time and storage space on the supercomputer in Cheyenne.

University of Wyoming faculty members and, in one case, a graduate student, will head projects that will use the NCAR-Wyoming Supercomputing Center (NWSC). Each project was critically reviewed by an external panel of experts and evaluated on the experimental design, computational effectiveness, efficiency of resource use, and broader impacts such as how the project involves both UW and NCAR researchers; strengthens UW’s research capacity; enhances UW’s computational programs; or involves research in a new or emerging field.

“The Wyoming-NCAR Allocations Panel evaluated a record-high nine requests,” says Bryan Shader, UW’s special assistant to the vice president for research and economic development, and professor of mathematics. “The projects were granted allocations totaling 42.6 million core hours of computing time on Yellowstone and will enable some incredible science on issues of importance to Wyoming, the U.S. and the world. Given that Wyoming’s share of the NWSC is 75 million core hours, these allocations and the more than 40 million (core hours) allocated in February show more than full utilization of the resource.”

Twenty-five UW-led projects used Yellowstone (the nickname for the supercomputer) in 2015, and this places Wyoming as the top university in total allocations, users and usage among the more than 150 universities that use the NWSC.

Since the supercomputer came on line during October 2012, allocations have been made to 65 UW research projects, including these latest nine, which commence July 1.

The newest projects, with a brief description and principal investigators, are as follows:

Maohang Fan, a UW professor of petroleum engineering, heads a project, titled, “Application of Density Functional Theory in CO2 Capture and Conversion Research.” The project, partially funded by the Department of Energy, seeks to design promising catalysts for capturing and converting carbon dioxide. Collaborators include Wenyong Wang, a UW professor of physics and astronomy; Ted Russell, the Howard T. Tellepsen Chair and Regents’ Professor in the School of Civil and Environmental Engineering at Georgia Tech; and Hongtao Yu, professor and chair in the Department of Chemistry and Biochemistry at Jackson State University.

Bart Geerts, a UW professor of atmospheric science, heads the project, titled “Regional Climate Change Assessment in the Interior Western USA Using a Dynamical Downscaling Method with CCSM Bias Corrections: Focus on Precipitation and Snowpack.” The project focuses on better understanding how the distribution of precipitation, snowpack and stream-flow in the headwaters region of Wyoming are expected to change over the next 30-40 years. A better understanding of long-term changes in Wyoming  watersheds is of great interest to the state’s water obligations and water development opportunities, as well as to agricultural and forestry interests in the state, and to downstream stakeholders.

Collaborators include UW postdoctoral student Yonggang Wang, UW doctoral student Xiaoqing Jing and Changhai Liu, a scientist from NCAR’s Research Applications Laboratory. The project is partially supported by the Wyoming Water Development Commission.

Zachary Lebo, a UW assistant professor of atmospheric science, leads a project, titled “Investigating Forecast Performance in Wyoming Using a High-Resolution Numerical Weather Prediction Model.” Lebo is interested in better understanding factors that result in forecast errors for weather across Wyoming and, in using this understanding, to create better prediction tools for ground blizzards. His project will lay the groundwork for a real-time Wyoming forecasting operation, and aspects of the project and modeling will be incorporated into UW’s “Introduction to Atmospheric Science” undergraduate course.

Xiahong Liu, a UW professor of atmospheric science and the Wyoming Excellence Chair in Climate, will lead two projects. The first, titled “Quantifying the Impacts of Absorbing Aerosols on Rocky Mountain Regional Climate,” seeks to better understand the impacts on regional climate from the presence of light-absorbing aerosols, such as dust and particles from fires or pollution on top of snow.

Collaborators include Louisa Emmons, Simone Tilmes, Andrew Gettelman and Mary Barth from the National Center for Atmospheric Research (NCAR); and Chun Zhao, Yun Qian and Ruby Leun from the Pacific Northwest National Laboratory. The project is partially funded by the College of Engineering and Applied Science’s Tier-1 Engineering Initiative.

The second project, titled, “Modeling the Impacts of Biomass Burning Aerosols on Marine Stratocumulus Clouds Using a Hierarchical Modeling System,” will study the effects of particulates from wildfires on cloud formation.

Collaborators include NCAR’s Emmons, Tilmes, Barth and Gettelman; Yuhang Wang, professor in the Department of Earth and Atmospheric Sciences at the Georgia Institute of Technology; and Yun Qian, of Pacific Northwest National Laboratory. The project is partially supported by a National Science Foundation (NSF)/Department of Energy grant.

Subhashis Mallick, a UW geology and geophysics professor, will lead the project, titled “Anistropic Reverse-Time Mitigation and Full-Wave Form Inversion of Single and Multicomponent Seismic Data and Joint Inversion Single Component Seismic and Electromagnetic Data.” The project will develop the key analytic tools needed to use seismic studies to determine the storage capacity, optimum resource recovery, and other qualities of subsurface reservoirs as carbon dioxide storage and sequestration sites.

Scott Miller, a UW professor in the Department of Ecosystem Science and Management, heads a project, titled “Integrating Dynamically Downscaled Climate Data with Hydrologic Models.” The project will couple atmospheric and hydrologic models to study the impacts on water resources and flow regimes in the Crow Creek watershed in southeast Wyoming under different climate scenarios. This is one of the main watersheds providing water to Cheyenne. The project is supported by an NSF grant, called Water in a Changing West.

Fred Ogden, a UW professor in the Department of Civil and Architectural Engineering, leads a project, titled “ADHydro Model Development,” that will further develop and test a large-scale hydrological model that incorporates the groundwater-surface water interactions that are of importance in management of reservoirs, diversions, etc. Both National Oceanic and Atmospheric Administration and the U.S. National Water Center are considering incorporating Ogden’s ADHydro model into their models.

Wei Wang, a UW graduate student majoring in geology and geophysics, will undertake a project, titled “Near-Surface Adjoint Tomography Based on the Discontinuous Galerkin Method.” The goal of his study is to image and study a portion of the Earth’s critical zone, or the portion of the Earth between bedrock and treetops. In particular, Wang will use near-surface seismic data to understand how rocks and soil weather. Research will focus on a site near Blair-Wallis in southeastern Wyoming. The project is partially supported by the NSF grant Water in a Changing West.

By the numbers

The most recent recommended allocations total 42.6 million core hours, 270 terabytes of archival storage, and 47,000 hours on data analysis and visualization systems, Shader says. To provide some perspective on what these numbers mean, here are some useful comparisons. In simplest terms, Yellowstone can be thought of as 72,576 personal computers that are cleverly interconnected to perform as one computer. The computational time allocated is equivalent to the use of the entire supercomputer for 24.5 days­, 24 hours a day. The 270 terabytes of storage would be enough to store the entire printed collection of the U.S. Library of Congress more than 20 times.

Yellowstone consists of about 70,000 processors, also known as cores. An allocation of one core hour allows a project to run one of these processors for one hour, or 1,000 of these for 1/1,000th of an hour.

The successor to the Yellowstone cluster, to be called Cheyenne, is scheduled to come online in early 2017. It is anticipated that Yellowstone will be retired in late 2017. In fall 2017, Wyoming researchers will have an opportunity to apply for early opportunities to use Cheyenne for ambitious projects that utilize Cheyenne’s increased capabilities.

In late 2016, Wyoming researchers will be able to apply for regular allocations on Cheyenne. Wyoming’s share of Cheyenne will be around 160 million core hours per year. The new high-performance computer will be a 5.34-petaflop system, meaning it can carry out 5.34 quadrillion calculations per second. It will be capable of more than 2.5 times the amount of scientific computing performed by Yellowstone.

The NWSC is the result of a partnership among the University Corporation for Atmospheric Research (UCAR), the operating entity for NCAR; UW; the state of Wyoming; Cheyenne LEADS; the Wyoming Business Council; and Black Hills Energy. The NWSC is operated by NCAR under sponsorship of the NSF.

The NWSC contains one of the world’s most powerful supercomputers dedicated to improving scientific understanding of climate change, severe weather, air quality and other vital atmospheric science and geo-science topics. The center also houses a premier data storage and archival facility that holds historical climate records and other information.

Source: University of Wyoming

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This