Nine UW Projects Awarded Summer Use of Supercomputer in Cheyenne

June 29, 2016

June 29 — Nine projects, a number of which have applications to atmospheric science issues, were recently chosen to receive computational time and storage space on the supercomputer in Cheyenne.

University of Wyoming faculty members and, in one case, a graduate student, will head projects that will use the NCAR-Wyoming Supercomputing Center (NWSC). Each project was critically reviewed by an external panel of experts and evaluated on the experimental design, computational effectiveness, efficiency of resource use, and broader impacts such as how the project involves both UW and NCAR researchers; strengthens UW’s research capacity; enhances UW’s computational programs; or involves research in a new or emerging field.

“The Wyoming-NCAR Allocations Panel evaluated a record-high nine requests,” says Bryan Shader, UW’s special assistant to the vice president for research and economic development, and professor of mathematics. “The projects were granted allocations totaling 42.6 million core hours of computing time on Yellowstone and will enable some incredible science on issues of importance to Wyoming, the U.S. and the world. Given that Wyoming’s share of the NWSC is 75 million core hours, these allocations and the more than 40 million (core hours) allocated in February show more than full utilization of the resource.”

Twenty-five UW-led projects used Yellowstone (the nickname for the supercomputer) in 2015, and this places Wyoming as the top university in total allocations, users and usage among the more than 150 universities that use the NWSC.

Since the supercomputer came on line during October 2012, allocations have been made to 65 UW research projects, including these latest nine, which commence July 1.

The newest projects, with a brief description and principal investigators, are as follows:

Maohang Fan, a UW professor of petroleum engineering, heads a project, titled, “Application of Density Functional Theory in CO2 Capture and Conversion Research.” The project, partially funded by the Department of Energy, seeks to design promising catalysts for capturing and converting carbon dioxide. Collaborators include Wenyong Wang, a UW professor of physics and astronomy; Ted Russell, the Howard T. Tellepsen Chair and Regents’ Professor in the School of Civil and Environmental Engineering at Georgia Tech; and Hongtao Yu, professor and chair in the Department of Chemistry and Biochemistry at Jackson State University.

Bart Geerts, a UW professor of atmospheric science, heads the project, titled “Regional Climate Change Assessment in the Interior Western USA Using a Dynamical Downscaling Method with CCSM Bias Corrections: Focus on Precipitation and Snowpack.” The project focuses on better understanding how the distribution of precipitation, snowpack and stream-flow in the headwaters region of Wyoming are expected to change over the next 30-40 years. A better understanding of long-term changes in Wyoming  watersheds is of great interest to the state’s water obligations and water development opportunities, as well as to agricultural and forestry interests in the state, and to downstream stakeholders.

Collaborators include UW postdoctoral student Yonggang Wang, UW doctoral student Xiaoqing Jing and Changhai Liu, a scientist from NCAR’s Research Applications Laboratory. The project is partially supported by the Wyoming Water Development Commission.

Zachary Lebo, a UW assistant professor of atmospheric science, leads a project, titled “Investigating Forecast Performance in Wyoming Using a High-Resolution Numerical Weather Prediction Model.” Lebo is interested in better understanding factors that result in forecast errors for weather across Wyoming and, in using this understanding, to create better prediction tools for ground blizzards. His project will lay the groundwork for a real-time Wyoming forecasting operation, and aspects of the project and modeling will be incorporated into UW’s “Introduction to Atmospheric Science” undergraduate course.

Xiahong Liu, a UW professor of atmospheric science and the Wyoming Excellence Chair in Climate, will lead two projects. The first, titled “Quantifying the Impacts of Absorbing Aerosols on Rocky Mountain Regional Climate,” seeks to better understand the impacts on regional climate from the presence of light-absorbing aerosols, such as dust and particles from fires or pollution on top of snow.

Collaborators include Louisa Emmons, Simone Tilmes, Andrew Gettelman and Mary Barth from the National Center for Atmospheric Research (NCAR); and Chun Zhao, Yun Qian and Ruby Leun from the Pacific Northwest National Laboratory. The project is partially funded by the College of Engineering and Applied Science’s Tier-1 Engineering Initiative.

The second project, titled, “Modeling the Impacts of Biomass Burning Aerosols on Marine Stratocumulus Clouds Using a Hierarchical Modeling System,” will study the effects of particulates from wildfires on cloud formation.

Collaborators include NCAR’s Emmons, Tilmes, Barth and Gettelman; Yuhang Wang, professor in the Department of Earth and Atmospheric Sciences at the Georgia Institute of Technology; and Yun Qian, of Pacific Northwest National Laboratory. The project is partially supported by a National Science Foundation (NSF)/Department of Energy grant.

Subhashis Mallick, a UW geology and geophysics professor, will lead the project, titled “Anistropic Reverse-Time Mitigation and Full-Wave Form Inversion of Single and Multicomponent Seismic Data and Joint Inversion Single Component Seismic and Electromagnetic Data.” The project will develop the key analytic tools needed to use seismic studies to determine the storage capacity, optimum resource recovery, and other qualities of subsurface reservoirs as carbon dioxide storage and sequestration sites.

Scott Miller, a UW professor in the Department of Ecosystem Science and Management, heads a project, titled “Integrating Dynamically Downscaled Climate Data with Hydrologic Models.” The project will couple atmospheric and hydrologic models to study the impacts on water resources and flow regimes in the Crow Creek watershed in southeast Wyoming under different climate scenarios. This is one of the main watersheds providing water to Cheyenne. The project is supported by an NSF grant, called Water in a Changing West.

Fred Ogden, a UW professor in the Department of Civil and Architectural Engineering, leads a project, titled “ADHydro Model Development,” that will further develop and test a large-scale hydrological model that incorporates the groundwater-surface water interactions that are of importance in management of reservoirs, diversions, etc. Both National Oceanic and Atmospheric Administration and the U.S. National Water Center are considering incorporating Ogden’s ADHydro model into their models.

Wei Wang, a UW graduate student majoring in geology and geophysics, will undertake a project, titled “Near-Surface Adjoint Tomography Based on the Discontinuous Galerkin Method.” The goal of his study is to image and study a portion of the Earth’s critical zone, or the portion of the Earth between bedrock and treetops. In particular, Wang will use near-surface seismic data to understand how rocks and soil weather. Research will focus on a site near Blair-Wallis in southeastern Wyoming. The project is partially supported by the NSF grant Water in a Changing West.

By the numbers

The most recent recommended allocations total 42.6 million core hours, 270 terabytes of archival storage, and 47,000 hours on data analysis and visualization systems, Shader says. To provide some perspective on what these numbers mean, here are some useful comparisons. In simplest terms, Yellowstone can be thought of as 72,576 personal computers that are cleverly interconnected to perform as one computer. The computational time allocated is equivalent to the use of the entire supercomputer for 24.5 days­, 24 hours a day. The 270 terabytes of storage would be enough to store the entire printed collection of the U.S. Library of Congress more than 20 times.

Yellowstone consists of about 70,000 processors, also known as cores. An allocation of one core hour allows a project to run one of these processors for one hour, or 1,000 of these for 1/1,000th of an hour.

The successor to the Yellowstone cluster, to be called Cheyenne, is scheduled to come online in early 2017. It is anticipated that Yellowstone will be retired in late 2017. In fall 2017, Wyoming researchers will have an opportunity to apply for early opportunities to use Cheyenne for ambitious projects that utilize Cheyenne’s increased capabilities.

In late 2016, Wyoming researchers will be able to apply for regular allocations on Cheyenne. Wyoming’s share of Cheyenne will be around 160 million core hours per year. The new high-performance computer will be a 5.34-petaflop system, meaning it can carry out 5.34 quadrillion calculations per second. It will be capable of more than 2.5 times the amount of scientific computing performed by Yellowstone.

The NWSC is the result of a partnership among the University Corporation for Atmospheric Research (UCAR), the operating entity for NCAR; UW; the state of Wyoming; Cheyenne LEADS; the Wyoming Business Council; and Black Hills Energy. The NWSC is operated by NCAR under sponsorship of the NSF.

The NWSC contains one of the world’s most powerful supercomputers dedicated to improving scientific understanding of climate change, severe weather, air quality and other vital atmospheric science and geo-science topics. The center also houses a premier data storage and archival facility that holds historical climate records and other information.


Source: University of Wyoming

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterized as transforming data into insights – which is exactly wh Read more…

By James Reinders

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPCwire Awards Highlight Supercomputing Achievements in the Sciences

January 3, 2019

In November at SC18 in Dallas, HPCwire Readers’ and Editors’ Choice awards program commemorated its 15th year of honoring achievement in HPC, with categories ranging from Best Use of AI to the Workforce Diversity Leadership Award and recipients across a wide variety of industrial and research sectors. Read more…

By the Editorial Team

White House Top Science Post Filled After Two-Year Vacancy

January 3, 2019

Half-way into Trump's term, the Senate has confirmed a director for the Office of Science and Technology Policy (OSTP), the agency that coordinates science poli Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This