Nine UW Projects Awarded Summer Use of Supercomputer in Cheyenne

June 29, 2016

June 29 — Nine projects, a number of which have applications to atmospheric science issues, were recently chosen to receive computational time and storage space on the supercomputer in Cheyenne.

University of Wyoming faculty members and, in one case, a graduate student, will head projects that will use the NCAR-Wyoming Supercomputing Center (NWSC). Each project was critically reviewed by an external panel of experts and evaluated on the experimental design, computational effectiveness, efficiency of resource use, and broader impacts such as how the project involves both UW and NCAR researchers; strengthens UW’s research capacity; enhances UW’s computational programs; or involves research in a new or emerging field.

“The Wyoming-NCAR Allocations Panel evaluated a record-high nine requests,” says Bryan Shader, UW’s special assistant to the vice president for research and economic development, and professor of mathematics. “The projects were granted allocations totaling 42.6 million core hours of computing time on Yellowstone and will enable some incredible science on issues of importance to Wyoming, the U.S. and the world. Given that Wyoming’s share of the NWSC is 75 million core hours, these allocations and the more than 40 million (core hours) allocated in February show more than full utilization of the resource.”

Twenty-five UW-led projects used Yellowstone (the nickname for the supercomputer) in 2015, and this places Wyoming as the top university in total allocations, users and usage among the more than 150 universities that use the NWSC.

Since the supercomputer came on line during October 2012, allocations have been made to 65 UW research projects, including these latest nine, which commence July 1.

The newest projects, with a brief description and principal investigators, are as follows:

Maohang Fan, a UW professor of petroleum engineering, heads a project, titled, “Application of Density Functional Theory in CO2 Capture and Conversion Research.” The project, partially funded by the Department of Energy, seeks to design promising catalysts for capturing and converting carbon dioxide. Collaborators include Wenyong Wang, a UW professor of physics and astronomy; Ted Russell, the Howard T. Tellepsen Chair and Regents’ Professor in the School of Civil and Environmental Engineering at Georgia Tech; and Hongtao Yu, professor and chair in the Department of Chemistry and Biochemistry at Jackson State University.

Bart Geerts, a UW professor of atmospheric science, heads the project, titled “Regional Climate Change Assessment in the Interior Western USA Using a Dynamical Downscaling Method with CCSM Bias Corrections: Focus on Precipitation and Snowpack.” The project focuses on better understanding how the distribution of precipitation, snowpack and stream-flow in the headwaters region of Wyoming are expected to change over the next 30-40 years. A better understanding of long-term changes in Wyoming  watersheds is of great interest to the state’s water obligations and water development opportunities, as well as to agricultural and forestry interests in the state, and to downstream stakeholders.

Collaborators include UW postdoctoral student Yonggang Wang, UW doctoral student Xiaoqing Jing and Changhai Liu, a scientist from NCAR’s Research Applications Laboratory. The project is partially supported by the Wyoming Water Development Commission.

Zachary Lebo, a UW assistant professor of atmospheric science, leads a project, titled “Investigating Forecast Performance in Wyoming Using a High-Resolution Numerical Weather Prediction Model.” Lebo is interested in better understanding factors that result in forecast errors for weather across Wyoming and, in using this understanding, to create better prediction tools for ground blizzards. His project will lay the groundwork for a real-time Wyoming forecasting operation, and aspects of the project and modeling will be incorporated into UW’s “Introduction to Atmospheric Science” undergraduate course.

Xiahong Liu, a UW professor of atmospheric science and the Wyoming Excellence Chair in Climate, will lead two projects. The first, titled “Quantifying the Impacts of Absorbing Aerosols on Rocky Mountain Regional Climate,” seeks to better understand the impacts on regional climate from the presence of light-absorbing aerosols, such as dust and particles from fires or pollution on top of snow.

Collaborators include Louisa Emmons, Simone Tilmes, Andrew Gettelman and Mary Barth from the National Center for Atmospheric Research (NCAR); and Chun Zhao, Yun Qian and Ruby Leun from the Pacific Northwest National Laboratory. The project is partially funded by the College of Engineering and Applied Science’s Tier-1 Engineering Initiative.

The second project, titled, “Modeling the Impacts of Biomass Burning Aerosols on Marine Stratocumulus Clouds Using a Hierarchical Modeling System,” will study the effects of particulates from wildfires on cloud formation.

Collaborators include NCAR’s Emmons, Tilmes, Barth and Gettelman; Yuhang Wang, professor in the Department of Earth and Atmospheric Sciences at the Georgia Institute of Technology; and Yun Qian, of Pacific Northwest National Laboratory. The project is partially supported by a National Science Foundation (NSF)/Department of Energy grant.

Subhashis Mallick, a UW geology and geophysics professor, will lead the project, titled “Anistropic Reverse-Time Mitigation and Full-Wave Form Inversion of Single and Multicomponent Seismic Data and Joint Inversion Single Component Seismic and Electromagnetic Data.” The project will develop the key analytic tools needed to use seismic studies to determine the storage capacity, optimum resource recovery, and other qualities of subsurface reservoirs as carbon dioxide storage and sequestration sites.

Scott Miller, a UW professor in the Department of Ecosystem Science and Management, heads a project, titled “Integrating Dynamically Downscaled Climate Data with Hydrologic Models.” The project will couple atmospheric and hydrologic models to study the impacts on water resources and flow regimes in the Crow Creek watershed in southeast Wyoming under different climate scenarios. This is one of the main watersheds providing water to Cheyenne. The project is supported by an NSF grant, called Water in a Changing West.

Fred Ogden, a UW professor in the Department of Civil and Architectural Engineering, leads a project, titled “ADHydro Model Development,” that will further develop and test a large-scale hydrological model that incorporates the groundwater-surface water interactions that are of importance in management of reservoirs, diversions, etc. Both National Oceanic and Atmospheric Administration and the U.S. National Water Center are considering incorporating Ogden’s ADHydro model into their models.

Wei Wang, a UW graduate student majoring in geology and geophysics, will undertake a project, titled “Near-Surface Adjoint Tomography Based on the Discontinuous Galerkin Method.” The goal of his study is to image and study a portion of the Earth’s critical zone, or the portion of the Earth between bedrock and treetops. In particular, Wang will use near-surface seismic data to understand how rocks and soil weather. Research will focus on a site near Blair-Wallis in southeastern Wyoming. The project is partially supported by the NSF grant Water in a Changing West.

By the numbers

The most recent recommended allocations total 42.6 million core hours, 270 terabytes of archival storage, and 47,000 hours on data analysis and visualization systems, Shader says. To provide some perspective on what these numbers mean, here are some useful comparisons. In simplest terms, Yellowstone can be thought of as 72,576 personal computers that are cleverly interconnected to perform as one computer. The computational time allocated is equivalent to the use of the entire supercomputer for 24.5 days­, 24 hours a day. The 270 terabytes of storage would be enough to store the entire printed collection of the U.S. Library of Congress more than 20 times.

Yellowstone consists of about 70,000 processors, also known as cores. An allocation of one core hour allows a project to run one of these processors for one hour, or 1,000 of these for 1/1,000th of an hour.

The successor to the Yellowstone cluster, to be called Cheyenne, is scheduled to come online in early 2017. It is anticipated that Yellowstone will be retired in late 2017. In fall 2017, Wyoming researchers will have an opportunity to apply for early opportunities to use Cheyenne for ambitious projects that utilize Cheyenne’s increased capabilities.

In late 2016, Wyoming researchers will be able to apply for regular allocations on Cheyenne. Wyoming’s share of Cheyenne will be around 160 million core hours per year. The new high-performance computer will be a 5.34-petaflop system, meaning it can carry out 5.34 quadrillion calculations per second. It will be capable of more than 2.5 times the amount of scientific computing performed by Yellowstone.

The NWSC is the result of a partnership among the University Corporation for Atmospheric Research (UCAR), the operating entity for NCAR; UW; the state of Wyoming; Cheyenne LEADS; the Wyoming Business Council; and Black Hills Energy. The NWSC is operated by NCAR under sponsorship of the NSF.

The NWSC contains one of the world’s most powerful supercomputers dedicated to improving scientific understanding of climate change, severe weather, air quality and other vital atmospheric science and geo-science topics. The center also houses a premier data storage and archival facility that holds historical climate records and other information.


Source: University of Wyoming

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire