NSF Announces New Expeditions in Computing Awards

March 25, 2020

March 25, 2020 — More than a decade ago, the National Science Foundation’s Directorate for Computer and Information Science and Engineering (CISE) established the Expeditions in Computing (Expeditions) program to build on past successes and provide the CISE research and education community with the opportunity to pursue ambitious, fundamental research agendas that would define the future the field for many years to come. Funded at levels up to $10 million for five years, Expeditions projects have represented the largest single research investments made by CISE during this period. Together with the Science and Technology Centers and the National Artificial Intelligence Research Institutes that CISE now supports, Expeditions projects form the centerpiece of the directorate’s center-scale award portfolio.

“For over 10 years, the Expeditions in Computing program has harnessed the vast amount of creativity in the computer science research community to expand our field’s horizons, offer societal benefits and enhance our nation’s economy,” said Margaret Martonosi, NSF Assistant Director for Computer and Information Science and Engineering. “The projects being awarded this year will undoubtedly do the same for decades to come, pushing the boundaries on challenging research problems with the potential to yield tremendous technological and societal advances.”

Previous Expeditions awards covered an expansive breadth of topics, from synthetic biology and behavioral neuroscience to computer vision, robotics, and quantum computing. This year, three more awards are added to the portfolio. These projects have the potential for far-reaching and enduring impacts to advance core science and engineering principles across multiple domains, build and motivate new techniques and tools, and create significant societal value.

Global Pervasive Computational Epidemiology
Lead PI: Madhav Maranthe, University of Virginia.
Collaborators: Princeton University, Massachusetts Institute of Technology, Arizona State University, Indiana University, Virginia Tech, University of Maryland, Yale University, Stanford University and Center for Disease Dynamics, Economics and Policy

Infectious diseases cause more than 13 million deaths per year worldwide. Emerging trends in globalization, anti-microbial resistance, urbanization and ecological pressures have increased the risk of a global pandemic. The current coronavirus outbreak and its potential global social, health and economic implications serves as a sobering example of the problem the human race continues to face. Computation and data science can capture the complexities underlying these disease determinants and revolutionize real-time epidemiology — leading to fundamentally new ways to reduce the global burden of infectious diseases that has plagued humanity for thousands of years. This Expeditions project will enable novel implementations of global infectious disease computational epidemiology by advancing innovative computing and data science techniques. The multidisciplinary team aims to leverage tools from computational theory, artificial intelligence, machine learning and social sciences to simulate epidemics and social interactions that may control or contribute to these epidemics. The tools developed through this project could provide new analytical capabilities to decision makers, potentially improving science-based decision making for epidemic planning and response.

Understanding the World Through Code
Lead PI: Armandao Solar-Lezama, Massachusetts Institute of Technology
Collaborators: University of Pennsylvania, California Institute of Technology, Rice University, University of Texas, Austin and Stanford University

In almost every field of science, it is now possible to capture large amounts of data. This has led machine learning to play an increasingly important role in scientific discovery, for example, sifting through large amounts of data to identify interesting events. But modern machine learning techniques are less well suited for the critical tasks of devising hypotheses consistent with the data or imagining new experiments to test those hypotheses. This Expeditions award aims to develop new learning techniques that can help automate the process of generating scientific theories from data. In effect, the project team seeks to develop learning techniques that can produce models in code that look much more like the models that scientists already write by hand. The team has grounded its work in four research areas with potential for significant impact: organic chemistry, biochemistry, cognitive science and behavioral modeling, and computing systems. Machine learning is already demonstrating value in all of these domains, including predicting properties of organic compounds, recognizing complex social activities and modeling computer performance. However, the team’s techniques could have a transformative impact in all of these domains by helping scientists move from black-box predictions to a deeper understanding of the processes that give rise to the data. This project holds promise to discover the understanding of the complex processes involved in many real-world application domains that give rise to data. This deeper understanding could lead to important contributions ranging from more efficient drug discovery to improved teaching methods grounded on a better understanding of cognition.

Coherent Ising Machines (CIMs)
Lead PI: Hideo Mabuchi, Stanford University
Collaborators: Caltech, Cornell University, Universities Space Research Association

From minimizing costs to maximizing efficiency, formulating a hard problem using an optimization framework is an approach used often in computation. However, solutions to most optimization problems often take exponentially more time to solve as the problem size increases. Efficient algorithms and specialized techniques to address these challenges is therefore crucial for application domains ranging from logistics and robotics to materials engineering and drug design. This Expeditions award exploits unconventional computing architectures, called Coherent Ising Machines (CIMs), to solve a class of optimization problems. CIMs provide a platform to test ideas for computer engineering in the post-Moore’s Law era. Next-generation CIMs also hold great promise to drive substantial practical advances in artificial intelligence (AI) capabilities in multiple fields. In addition, the unconventional memory format used by these machines may establish a pathway towards novel quantum information technologies.

“These three awards will enrich CISE’s Expeditions portfolio,” said Mitra Basu, lead program director for Expeditions. “The proposed research is foundational yet tackles cutting-edge topics. The projects will tackle some of the most vexing optimization problems, address a pressing need facing society and revolutionize scientific discovery.”

About The National Science Foundation

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2019, its budget is $8.1 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives more than 50,000 competitive proposals for funding and makes about 12,000 new funding awards.


Source: The National Science Foundation

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire