NSF Awards Compute Time on TACC’s Frontera Supercomputer to 49 Projects

April 9, 2020

April 9, 2020 — The most powerful supercomputer in the world for academic research has established its mission for the coming year.The Texas Advanced Computing Center (TACC) announced that the National Science Foundation has approved allocations of supercomputing time on Frontera to 49 science projects for 2020-2021. Time on Frontera is awarded based on a project’s need for very large scale computing to make science and engineering discoveries, and the ability to efficiently use a supercomputer on the scale of Frontera.
Research combining machine learning with physics-based modeling on Frontera will help make complex cosmological problems tractable. [Tiziana DiMatteo, Carnegie Mellon University]
The projects selected range from efforts to model the global climate to simulating tornadoes over the lifetime of a storm to designing vehicles for hypersonic flight. The projects are led by researchers at 34 universities across 16 states and began April 1, 2020.Frontera is a National Science Foundation (NSF)-funded leadership-class computer system designed to be used by the most experienced academic computational scientists in the nation. In 2018, NSF awarded TACC a $60 million grant to design and build the system, and another $60 million to operate the system for five years. Frontera was deployed in September 2019 and since last fall, teams of early users — selected by NSF or granted discretionary access to the system — have successfully used Frontera for science.”Computation and data-analytics are now an integral part of the scientific discovery workflow for many fields of science and engineering,” said Edward Walker, Program Director in the NSF Office of Advanced Cyberinfrastructure. “The Frontera system, as well as the expert team assembled to support the scientists using the system, serves as an important instrument for the nation. NSF funded Frontera to inspire new transformative ideas and explorations, and to shed light on fundamental scientific discoveries that would not be possible otherwise.”
Research combining machine learning with physics-based modeling on Frontera will help make complex cosmological problems tractable. [Tiziana DiMatteo, Carnegie Mellon University]
The allocations awarded this month represent the first cohort of Frontera users selected by the Large Resource Allocation Committee (LRAC) — a peer-review committee of computational science experts convened annually to assess the readiness and appropriateness of projects for time on Frontera.To be considered for an LRAC allocation, researchers needed to justify the scientific need for the request, and be able to use at least 250,000 node hours (with 56 cores per node) annually, with a maximum award of 5 million node hours per project. Approximately one-third of submitted proposals were awarded time on Frontera.The projects awarded allocations on Frontera will utilize a total of 54 million node hours. They constitute approximately 65% of the total time on the system being allocated for this year.An additional 30% of the total time on Frontera will be awarded to “Pathways” projects — smaller allocations to science teams with a strong scientific justification for access to a leadership-class computing resource who have not yet demonstrated code readiness — and “Large-Scale Community Partnerships”— extended allocations of up to three years to support long-lived science and engineering experiments. (Awards for those two tracks will be announced later this month.) A final 5% will be awarded on an as-needed basis to projects of urgent need, educational projects, and industrial collaborations.”We’re excited by the strength of the applications and the breadth of science that Frontera will support,” said Tommy Minyard, TACC Director of Advanced Computing Systems.

Among the awardees is Ivan Soltesz, a neuroscientist at the Stanford School of Medicine who received an allocation of 1.4 million node hours on Frontera to develop a data-driven, biologically-constrained model of the hippocampal network at scale.

Visualization of the nuclear pore complex in a cell, which serves as a passageway into and out of the nucleus. The researchers completed a simulation of the 150 million atom system using up to 4,000 compute nodes, or half of the entire Frontera supercomputer. [Credit: Aksimentiev Group, University of Illinois at Urbana-Champaign]
“Our generous allocation of compute time on Frontera makes it possible to perform uniquely large-scale, data-driven simulations of key brain cell networks involved in memory with unprecedented biological realism,” Soltesz said.Another awardee, Caroline Riedl, research assistant professor of Physics at the University of Illinois, is part of a large international collaboration analyzing particle collision data from the Super Proton Synchrotron at CERN. Riedl was awarded 1.5 million hours to unravel the mass of hadrons and the quark structure of protons. Her work will analyze past particle physics experiments from the COMPASS experiment and explore new detectors for quantum chromodynamics research (COMPASS++/AMBER).”We were very excited to learn that our request for an LRAC allocation on TACC’s Frontera was approved,” Riedl said. “The Frontera resources will allow us to analyze the data collected with the nuclear physics experiment COMPASS at CERN significantly faster and at greater precision and answer questions like: what holds the world together at its core? And what is the origin of the mass of objects in our daily life?”Daniel Bodony, Blue Waters Professor in the Department of Aerospace Engineering at the University of Illinois at Urbana-Champaign, will use his allocation of 5 million node hours on Frontera to study fluid-thermal-structure interactions, one of the principal challenges that inhibits hypersonic vehicle design.”Our allocated time on Frontera will enable us to understand how hypersonic vehicles interact with the very fast, hot, and turbulent flows they generate,” Bodony said. “We are especially interested in predicting and modeling how the vehicle’s external surface responds – deforms and heats-up – to the high-speed flow, as well as how the surface changes impact the flow itself.”

An award of compute time on Frontera will enable Carnegie Mellon Astrophysicist Tiziana DiMatteo to perform cosmological simulations that follow the fate of the universe from the Big Bang all the way to the formation of all galaxies and their massive black holes.

“The novel HPC framework developed for Frontera, driven by CPUs and on-chip neural network accelerators, will allow us to merge generative deep learning with cosmological codes,” DiMatteo said. “AI methods will accelerate cosmological simulations to forge new paths as cosmology moves into the Hyper-Moore regime.”

Frontera is the fifth most powerful supercomputer in the world, the largest at any university, and the fastest non-accelerated (primarily CPU-based) system in the world, according to the latest Top500 list.

“Frontera is an important national resource, helping to accelerate academic research and maintain U.S. technological competitiveness,” said Minyard. “NSF’s investment in cyberinfrastructure, and their trust in TACC to build and operate Frontera, is of paramount importance to the health, security and well-being of our nation.”

[View a full list of awarded projects.]

About Texas Advanced Computing Center (TACC)
TACC designs and deploys the world’s most powerful advanced computing technologies and innovative software solutions to enable researchers to answer complex questions like these and many more. Every day, researchers rely on our computing experts and resources to help them gain insights and make discoveries that change the world. TACC’s environment includes a comprehensive cyberinfrastructure ecosystem of leading-edge resources in high performance computing (HPC), visualization, data analysis, storage, archive, cloud, data-driven computing, connectivity, tools, APIs, algorithms, consulting, and software. In addition, our skilled experts work with thousands of researchers on more than 3,000 projects each year.


Source: Aaron Dubrow, Texas Advanced Computing Center (TACC)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire