NSF Awards Compute Time on TACC’s Frontera Supercomputer to 49 Projects

April 9, 2020

April 9, 2020 — The most powerful supercomputer in the world for academic research has established its mission for the coming year.The Texas Advanced Computing Center (TACC) announced that the National Science Foundation has approved allocations of supercomputing time on Frontera to 49 science projects for 2020-2021. Time on Frontera is awarded based on a project’s need for very large scale computing to make science and engineering discoveries, and the ability to efficiently use a supercomputer on the scale of Frontera.
Research combining machine learning with physics-based modeling on Frontera will help make complex cosmological problems tractable. [Tiziana DiMatteo, Carnegie Mellon University]
The projects selected range from efforts to model the global climate to simulating tornadoes over the lifetime of a storm to designing vehicles for hypersonic flight. The projects are led by researchers at 34 universities across 16 states and began April 1, 2020.Frontera is a National Science Foundation (NSF)-funded leadership-class computer system designed to be used by the most experienced academic computational scientists in the nation. In 2018, NSF awarded TACC a $60 million grant to design and build the system, and another $60 million to operate the system for five years. Frontera was deployed in September 2019 and since last fall, teams of early users — selected by NSF or granted discretionary access to the system — have successfully used Frontera for science.”Computation and data-analytics are now an integral part of the scientific discovery workflow for many fields of science and engineering,” said Edward Walker, Program Director in the NSF Office of Advanced Cyberinfrastructure. “The Frontera system, as well as the expert team assembled to support the scientists using the system, serves as an important instrument for the nation. NSF funded Frontera to inspire new transformative ideas and explorations, and to shed light on fundamental scientific discoveries that would not be possible otherwise.”
Research combining machine learning with physics-based modeling on Frontera will help make complex cosmological problems tractable. [Tiziana DiMatteo, Carnegie Mellon University]
The allocations awarded this month represent the first cohort of Frontera users selected by the Large Resource Allocation Committee (LRAC) — a peer-review committee of computational science experts convened annually to assess the readiness and appropriateness of projects for time on Frontera.To be considered for an LRAC allocation, researchers needed to justify the scientific need for the request, and be able to use at least 250,000 node hours (with 56 cores per node) annually, with a maximum award of 5 million node hours per project. Approximately one-third of submitted proposals were awarded time on Frontera.The projects awarded allocations on Frontera will utilize a total of 54 million node hours. They constitute approximately 65% of the total time on the system being allocated for this year.An additional 30% of the total time on Frontera will be awarded to “Pathways” projects — smaller allocations to science teams with a strong scientific justification for access to a leadership-class computing resource who have not yet demonstrated code readiness — and “Large-Scale Community Partnerships”— extended allocations of up to three years to support long-lived science and engineering experiments. (Awards for those two tracks will be announced later this month.) A final 5% will be awarded on an as-needed basis to projects of urgent need, educational projects, and industrial collaborations.”We’re excited by the strength of the applications and the breadth of science that Frontera will support,” said Tommy Minyard, TACC Director of Advanced Computing Systems.

Among the awardees is Ivan Soltesz, a neuroscientist at the Stanford School of Medicine who received an allocation of 1.4 million node hours on Frontera to develop a data-driven, biologically-constrained model of the hippocampal network at scale.

Visualization of the nuclear pore complex in a cell, which serves as a passageway into and out of the nucleus. The researchers completed a simulation of the 150 million atom system using up to 4,000 compute nodes, or half of the entire Frontera supercomputer. [Credit: Aksimentiev Group, University of Illinois at Urbana-Champaign]
“Our generous allocation of compute time on Frontera makes it possible to perform uniquely large-scale, data-driven simulations of key brain cell networks involved in memory with unprecedented biological realism,” Soltesz said.Another awardee, Caroline Riedl, research assistant professor of Physics at the University of Illinois, is part of a large international collaboration analyzing particle collision data from the Super Proton Synchrotron at CERN. Riedl was awarded 1.5 million hours to unravel the mass of hadrons and the quark structure of protons. Her work will analyze past particle physics experiments from the COMPASS experiment and explore new detectors for quantum chromodynamics research (COMPASS++/AMBER).”We were very excited to learn that our request for an LRAC allocation on TACC’s Frontera was approved,” Riedl said. “The Frontera resources will allow us to analyze the data collected with the nuclear physics experiment COMPASS at CERN significantly faster and at greater precision and answer questions like: what holds the world together at its core? And what is the origin of the mass of objects in our daily life?”Daniel Bodony, Blue Waters Professor in the Department of Aerospace Engineering at the University of Illinois at Urbana-Champaign, will use his allocation of 5 million node hours on Frontera to study fluid-thermal-structure interactions, one of the principal challenges that inhibits hypersonic vehicle design.”Our allocated time on Frontera will enable us to understand how hypersonic vehicles interact with the very fast, hot, and turbulent flows they generate,” Bodony said. “We are especially interested in predicting and modeling how the vehicle’s external surface responds – deforms and heats-up – to the high-speed flow, as well as how the surface changes impact the flow itself.”

An award of compute time on Frontera will enable Carnegie Mellon Astrophysicist Tiziana DiMatteo to perform cosmological simulations that follow the fate of the universe from the Big Bang all the way to the formation of all galaxies and their massive black holes.

“The novel HPC framework developed for Frontera, driven by CPUs and on-chip neural network accelerators, will allow us to merge generative deep learning with cosmological codes,” DiMatteo said. “AI methods will accelerate cosmological simulations to forge new paths as cosmology moves into the Hyper-Moore regime.”

Frontera is the fifth most powerful supercomputer in the world, the largest at any university, and the fastest non-accelerated (primarily CPU-based) system in the world, according to the latest Top500 list.

“Frontera is an important national resource, helping to accelerate academic research and maintain U.S. technological competitiveness,” said Minyard. “NSF’s investment in cyberinfrastructure, and their trust in TACC to build and operate Frontera, is of paramount importance to the health, security and well-being of our nation.”

[View a full list of awarded projects.]

About Texas Advanced Computing Center (TACC)
TACC designs and deploys the world’s most powerful advanced computing technologies and innovative software solutions to enable researchers to answer complex questions like these and many more. Every day, researchers rely on our computing experts and resources to help them gain insights and make discoveries that change the world. TACC’s environment includes a comprehensive cyberinfrastructure ecosystem of leading-edge resources in high performance computing (HPC), visualization, data analysis, storage, archive, cloud, data-driven computing, connectivity, tools, APIs, algorithms, consulting, and software. In addition, our skilled experts work with thousands of researchers on more than 3,000 projects each year.


Source: Aaron Dubrow, Texas Advanced Computing Center (TACC)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI Chip Start-up Groq to Detail Technology Progress in Fall

August 13, 2020

AI chip startup Groq announced yesterday it had closed its most recent funding round, saying the new investments will help it double in size by the end of this year and double again by the end of next year as it transiti Read more…

By John Russell

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-512 optimizations for the NAMD scalable molecular dynamics cod Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yesterday, Intel reported an Optane and DAOS-based system finishe Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows users to virtually “walk” around the massive supercomputer Read more…

By Oliver Peckham

Supercomputer Simulations Examine Changes in Chesapeake Bay

August 8, 2020

The Chesapeake Bay, the largest estuary in the continental United States, weaves its way south from Maryland, collecting waters from West Virginia, Delaware, DC, Pennsylvania and New York along the way. Like many major e Read more…

By Oliver Peckham

AWS Solution Channel

University of Adelaide Provides Seamless Bioinformatics Training Using AWS

The University of Adelaide, established in South Australia in 1874, maintains a rich history of scientific innovation. For more than 140 years, the institution and its researchers have had an impact all over the world—making vital contributions to the invention of X-ray crystallography, insulin, penicillin, and the Olympic torch. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Student Success from ‘Scratch’: CHPC’s Proof is in the Pudding

August 7, 2020

Happy Sithole, who directs the South African Centre for High Performance Computing (SA-CHPC), called the 13th annual CHPC National conference to order on December 1, 2019, at the Birchwood Conference Centre in Kempton Pa Read more…

By Elizabeth Leake

AI Chip Start-up Groq to Detail Technology Progress in Fall

August 13, 2020

AI chip startup Groq announced yesterday it had closed its most recent funding round, saying the new investments will help it double in size by the end of this Read more…

By John Russell

Intel Speeds NAMD by 1.8x: Saves Xeon Processor Users Millions of Compute Hours

August 12, 2020

Potentially saving datacenters millions of CPU node hours, Intel and the University of Illinois at Urbana–Champaign (UIUC) have collaborated to develop AVX-51 Read more…

By Rob Farber

Intel’s Optane/DAOS Solution Tops Latest IO500

August 11, 2020

Intel’s persistent memory technology, Optane, and its DAOS (Distributed Asynchronous Object Storage) stack continue to impress and gain market traction. Yeste Read more…

By John Russell

Summit Now Offers Virtual Tours

August 10, 2020

Summit, the second most powerful publicly ranked supercomputer in the world, now has a virtual tour. The tour, implemented by 3D platform Matterport, allows use Read more…

By Oliver Peckham

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implem Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This