NSF Names Jennifer Dionne and Mark Braverman Its 2019 Alan T. Waterman Awardees

April 11, 2019

April 11, 2019 — The National Science Foundation (NSF) has named materials scientist Jennifer Dionne and computer scientist Mark Braverman the recipients of this year’s Alan T. Waterman Award.

The Waterman Award annually recognizes an outstanding young researcher in any field of science or engineering supported by NSF. Researchers 40 years of age or younger, or up to 10 years post Ph.D., are eligible. This year, two outstanding researchers are recognized.

“This year’s recipients are innovative and enthusiastic early career scientists who are truly exceptional researchers,” NSF Director France A. Córdova said. “Jennifer Dionne is addressing some of the most important challenges in nanoscience and is already making enormous impact in fields from infectious disease to renewable energy. Mark Braverman’s research is devoted to developing algorithms and designs that can withstand the effects of ubiquitous noise present in all learning and computational tasks. These awardees are scientific trailblazers, whose approach to research is thoughtful, creative and cross-cutting, inspiring others to explore new frontiers.”

Widespread impact by illuminating the nanoscale

Dionne, Stanford University Associate Professor of Materials Science, is developing techniques and tools to image dynamic physical, chemical and biological processes with extremely high resolution. Her research is enabling new knowledge to help solve global challenges in biomedicine, energy and computing.

For instance, Dionne pioneered the development of new environmental transmission electron spectroscopies that allow direct imaging of chemical reactions with sub-nanometer-scale spatial resolution in real-time. This work helps identify nanostructures for energy conversion and storage with the highest efficiency.

Dionne also devised techniques to incorporate light excitation and detection into the transmission electron microscope, enabling deeply sub-wavelength dynamic optical imaging. This work has resulted in major research advances for photocatalysis and bioimaging, and also provides a new, one-of-a-kind shared facility available to the international community.

Thanks to her imaging advances, there may soon be a way to detect and identify a single bacterium in a milliliter of blood — an ability with profound implications for infectious disease detection.

“This project is especially exciting, spanning both fundamental and applied research with the potential for clinical impact,” Dionne said. “It draws on many of the physics and chemistry-based technologies my lab has developed, and has given me the opportunity to work alongside doctors, clinicians, and computer scientists. Beyond just detecting pathogens, we are eager to learn about how bacteria might be responding or evolving with various drug treatments or within distinct patient demographics.”

Dionne’s innovative research is not limited to new microscopies, with considerable research manipulating the interaction of light with matter. For example, she received an NSF CAREER award in 2012 to develop metamaterials that give a “twist” to light-matter interactions, enabling detection and sorting of chiral molecules. She has also received the Materials Research Society Young Investigator Award for noteworthy contributions to nanophotonics and a Presidential Early Career Award, the highest honor bestowed by the U.S. government on outstanding scientists and engineers in the early stages of their careers.

She is currently director of the Photonics at Thermodynamic Limits Energy Frontier Research Center, funded by the Department of Energy, and received enabling research support from the U.S. Air Force Office of Scientific Research and Moore Foundation, among others.

Cracking complexity to understand the universe

Braverman, Princeton University Professor of Computer Science, studies complexity theory, algorithms and the limits of what’s possible computationally.

Braverman’s research focuses on complexity, including looking at algorithms for optimization, which, when applied, might mean planning a route — how to get from point A to point B in the most efficient way possible.

Algorithms are everywhere. Most people know that every time someone uses a computer, algorithms are at work. But they also occur in nature. Braverman examines randomness in the motion of objects, down to the erratic movement of particles in a fluid.

His work is also tied to algorithms required for learning, which serve as building blocks to artificial intelligence, and has even had implications for the foundations of quantum computing.

Braverman’s work includes mechanism design with applications in health care. His multidisciplinary approach is developing algorithms to address issues such as a new way to match medical residents to U.S. hospitals, and ways to implement new incentive structures in health insurance.

“Every year, every time a new concept comes up, there are more algorithmic questions,” Braverman said. “It’s a young field that is full of surprises. Algorithms are in every part of both the human and natural world, and understanding facts surrounding them is a basic quest — just like the quest of understanding facts about energy, matter or the various parts of the universe.”

Braverman has solved two puzzles that eluded researchers for decades: the Grothendieck constant and the Linial-Nisan conjecture. The results earned him several accolades in his field, including the 2016 Presburger Award, the 2014 Stephen Smale Prize, a 2013 Packard fellowship, and now the Waterman Award. Like Dionne, Braverman also received an NSF CAREER award in 2012.

Each awardee will receive $1 million, distributed over five years. The Waterman Award will be presented to both recipients at a ceremony held in Washington, D.C., on May 14, 2019.


Source: NSF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition of HPC leader Jack Wells, director of science, Oak Ridge Le Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

5 Benefits Artificial Intelligence Brings to HPC

According to findings from Hyperion Research, simulation is primarily responsible for expanding the global HPC market from $2 billion in 1990 to a projected $38 billion in 2022. Read more…

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage and data management for AI, big data and HPC acceleration. I Read more…

By Doug Black

First All-Petaflops Top500 List Debuts; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition Read more…

By John Russell

At ISC: DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage Read more…

By Doug Black

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This