Nuclear Physics Gets a Boost for High-Performance Computing

December 7, 2022

NEWPORT NEWS, Va., Dec. 7, 2022 — Efforts to harness the power of supercomputers to better understand the hidden worlds inside the nucleus of the atom recently received a big boost. A project led by the U.S. Department of Energy’s (DOE’s) Thomas Jefferson National Accelerator Facility is one of three to split $35 million in grants from the DOE via a partnership program of DOE’s Scientific Discovery through Advanced Computing (SciDAC).

Each of the projects receiving the grants are joint projects between DOE’s Nuclear Physics (NP) and Advanced Scientific Computing Research (ASCR) programs via a partnership program of SciDAC.

Making the Most of Advanced Computational Resources

As supercomputers become ever-more powerful, scientists need advanced tools to take full advantage of their capabilities. For example, the Oak Ridge Leadership Computing Facility (OLCF) at DOE’s Oak Ridge National Lab now hosts the world’s first public exascale supercomputer. Its Frontier supercomputer has achieved 1 exaFLOPS in capability by demonstrating it can perform one billion-billion calculations per second.

“Nuclear physics is a rich, diverse and exciting area of research explaining the origins of visible matter. And in nuclear physics, high-performance computing is a critically important tool in our efforts to unravel the origins of nuclear matter in our universe,” said Robert Edwards, a senior staff scientist and deputy group leader of Jefferson Lab’s Center for Theoretical and Computational Physics.

Edwards is the principal investigator for one of the three projects. His project, “Fundamental nuclear physics at the exascale and beyond,” will build a solid foundation of software resources for nuclear physicists to address key questions regarding the building blocks of the visible universe. The project seeks to help nuclear physicists tease out questions about the basic properties of particles, such as the ubiquitous proton.

“One of the key research questions that we hope to one day answer is what is the origin of a particle’s mass, what is the origin of its spin, and what are the emerging properties of a dense system of particles?” explained Edwards.

The $13 million project includes key scientists based at six DOE national labs and two universities, including Jefferson Lab, Argonne National Lab, Brookhaven National Lab, Oak Ridge National Lab, Lawrence Berkeley National Lab, Los Alamos National Lab, Massachusetts Institute of Technology and William & Mary.

It aims to optimize the software tools needed for calculations of quantum chromodynamics (QCD). QCD is the theory that describes the structure of protons and neutrons – the particles that make up atomic nuclei – as well as provide insight to other particles that help build our universe. Protons are built of smaller particles called quarks held together by a force-fed glue manifesting as gluon particles. What’s not clear is how the proton’s properties arise from quarks and gluons.

“The evidence points to the mass of quarks as extremely tiny, only 1%. The rest is from the glue. So, what part does glue play in that internal structure?” he said.

Modeling the Subatomic Universe

The goal of the supercomputer calculations is to mimic how quarks and gluons experience the real world at their own teensy scale in a way that can be calculated by computers. To do that, the nuclear physicists use supercomputers to first generate a snapshot of the environment inside a proton where these particles live for the calculations. Then, they mathematically drop in some quarks and glue and use supercomputers to predict how they interact. Averaging over thousands of these snapshots gives physicists a way to emulate the particles’ lives in the real world.

Solutions from these calculations will provide input for experiments taking place today at Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) and Brookhaven Lab’s Relativistic Heavy Ion Collider (RHIC). CEBAF and RHIC are both DOE Office of Science user facilities.

“While we did not base this proposal on the requirements of the future Electron-Ion Collider, many of the problems that we are trying to address now, such as code infrastructures and methodology, will impact the EIC,” Edwards added.

The project will use a four-pronged approach to help streamline these calculations for better use on supercomputers, while also preparing for ever-more-powerful machines to come online.

The first two approaches relate to generation of the quarks’ and gluons’ little slice of the universe. The researchers aim to make this task easier for computers by streamlining the process with upgraded software and by using software to break down this process into smaller chunks of calculations that will be easier for a computer to calculate. The second part of this project will then bring in machine learning to see if the existing algorithms can be improved by additional computer modelling.

The third approach involves exploring and testing out new techniques for the portion of the calculations that model how quarks and gluons interact in their computer-generated universe.

The fourth and last approach will collect all of the information from the first three prongs and begin to scale them for use on next-generation supercomputers.

All three SciDAC projects awarded grants by DOE span efforts in nuclear physics research. Together, the projects address fundamental questions about the nature of nuclear matter, including the properties of nuclei, nuclear structure, nucleon imaging, and discovering exotic states of quarks and gluons.

“The SciDAC partnership projects deploy high-performance computing and enable world-leading science discoveries in our nuclear physics facilities,” said Timothy Hallman, DOE’s associate director of science for NP.

The total funding announced by DOE includes $35 million lasting five years, with $7.2 million in Fiscal Year 2022 and outyear funding contingent on congressional appropriations.

About Jefferson Lab

Thomas Jefferson National Accelerator Facility (Jefferson Lab) is a U.S. Department of Energy Office of Science national laboratory. Scientists worldwide utilize the lab’s unique particle accelerator, known as the Continuous Electron Beam Accelerator Facility (CEBAF), to probe the most basic building blocks of matter – helping us to better understand these particles and the forces that bind them – and ultimately our world.

In addition, the lab capitalizes on its unique technologies and expertise to perform advanced computing and applied research with industry and university partners, and provides programs designed to help educate the next generation in science and technology.


Source: Jefferson Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire