NVIDIA Achieves Breakthroughs in Language Understanding to Enable Real-Time Conversational AI

August 14, 2019

SANTA CLARA, Calif., August 14, 2019 — NVIDIA announced breakthroughs in language understanding that allow businesses to engage more naturally with customers using real-time conversational AI.

NVIDIA’s AI platform is the first to train one of the most advanced AI language models — BERT — in less than an hour and complete AI inference in just over 2 milliseconds. This groundbreaking level of performance makes it possible for developers to use state-of-the-art language understanding for large-scale applications they can make available to hundreds of millions of consumers worldwide.

Early adopters of NVIDIA’s performance advances include Microsoft and some of the world’s most innovative startups, which are harnessing NVIDIA’s platform to develop highly intuitive, immediately responsive language-based services for their customers.

Limited conversational AI services have existed for several years. But until this point, it has been extremely difficult for chatbots, intelligent personal assistants and search engines to operate with human-level comprehension due to the inability to deploy extremely large AI models in real time. NVIDIA has addressed this problem by adding key optimizations to its AI platform — achieving speed records in AI training and inference and building the largest language model of its kind to date.

“Large language models are revolutionizing AI for natural language,” said Bryan Catanzaro, vice president of Applied Deep Learning Research at NVIDIA. “They are helping us solve exceptionally difficult language problems, bringing us closer to the goal of truly conversational AI. NVIDIA’s groundbreaking work accelerating these models allows organizations to create new, state-of-the-art services that can assist and delight their customers in ways never before imagined.”

Fastest Training, Fastest Inference, Largest Model
AI services powered by natural language understanding are expected to grow exponentially in the coming years. Digital voice assistants alone are anticipated to climb from 2.5 billion to 8 billion within the next four years, according to Juniper Research. Additionally, Gartner predicts, by 2021, 15% of all customer service interactions will be completely handled by AI, an increase of 400% from 2017.1

Helping lead this new era, NVIDIA has fine-tuned its AI platform with key optimizations that have resulted in three new natural language understanding performance records:

  • Fastest training: Running the large version of one of the world’s most advanced AI language models — Bidirectional Encoder Representations from Transformers (BERT) — an NVIDIA DGX SuperPOD using 92 NVIDIA DGX-2H systems running 1,472 NVIDIA V100 GPUs slashed the typical training time for BERT-Large from several days to just 53 minutes. Additionally, NVIDIA trained BERT-Large on just one NVIDIA DGX-2 system in 2.8 days – demonstrating NVIDIA GPUs’ scalability for conversational AI.
  • Fastest inference: Using NVIDIA T4 GPUs running NVIDIA TensorRT, NVIDIA performed inference on the BERT-Base SQuAD dataset in only 2.2 milliseconds – well under the 10-millisecond processing threshold for many real-time applications, and a sharp improvement from over 40 milliseconds measured with highly optimized CPU code.
  • Largest model: With a focus on developers’ ever-increasing need for larger models, NVIDIA Research built and trained the world’s largest language model based on Transformers, the technology building block used for BERT and a growing number of other natural language AI models. NVIDIA’s custom model, with 8.3 billion parameters, is 24 times the size of BERT-Large.

Ecosystem Adoption
Hundreds of developers worldwide are already using NVIDIA’s AI platform to advance their own language understanding research and create new services.

Microsoft Bing is using the power of its Azure AI platform and NVIDIA technology to run BERT and drive more accurate search results.

“Microsoft Bing relies on the most advanced AI models and computing platform to deliver the best global search experience possible for our customers,” said Rangan Majumder, group program manager, Microsoft Bing. “In close collaboration with NVIDIA, Bing further optimized the inferencing of the popular natural language model BERT using NVIDIA GPUs, part of Azure AI infrastructure, which led to the largest improvement in ranking search quality Bing deployed in the last year. We achieved two times the latency reduction and five times throughput improvement during inference using Azure NVIDIA GPUs compared with a CPU-based platform, enabling Bing to offer a more relevant, cost-effective, real-time search experience for all our customers globally.”

Several startups in NVIDIA’s Inception program, including Clinc, Passage AI and Recordsure, are also using NVIDIA’s AI platform to build cutting-edge conversational AI services for banks, car manufacturers, retailers, healthcare providers, travel and hospitality companies, and more.

Clinc has made NVIDIA GPU-enabled conversational AI solutions accessible to more than 30 million people globally through a customer roster that includes leading car manufacturers, healthcare organizations and some of the world’s leading financial institutions, including Barclays, USAA and Turkey’s largest bank, Isbank.

“Clinc’s leading AI platform understands complex questions and transforms them into powerful, actionable insights for the world’s leading brands,” said Jason Mars, CEO of Clinc. “The breakthrough performance that NVIDIA’s AI platform provides has allowed us to push the boundaries of conversational AI and deliver revolutionary services that help our customers use technology to engage with their customers in powerful, more meaningful ways.”

Optimizations Available Today
NVIDIA has made the software optimizations used to accomplish these breakthroughs in conversational AI available to developers:

*NVIDIA’s implementation of BERT is an optimized version of the popular Hugging Face repo

About NVIDIA
NVIDIA‘s invention of the GPU in 1999 sparked the growth of the PC gaming market, redefined modern computer graphics and revolutionized parallel computing. More recently, GPU deep learning ignited modern AI — the next era of computing — with the GPU acting as the brain of computers, robots and self-driving cars that can perceive and understand the world. More information at http://nvidianews.nvidia.com/.


Source: NVIDIA 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Interface (OpenCAPI) and Open Memory Interface (OMI) to the Linux Read more…

By John Russell

Stampede2 ‘Shocks’ with New Shock Turbulence Insights

August 19, 2019

Shockwaves play roles in everything from high-speed aircraft to supernovae – and now, supercomputer-powered research from the Texas A&M University and the Texas Advanced Computing Center (TACC) is helping to shed l Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Nanosheet Transistors: The Last Step in Moore’s Law?

August 19, 2019

Forget for a moment the clamor around the decline of Moore’s Law. It's had a brilliant run, something to be marveled at given it’s not a law at all. Squeezing out the last bit of performance that roughly corresponds Read more…

By John Russell

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This