NVIDIA Partners with Manufacturers to Advance AI Cloud Computing

May 30, 2017

TAIPEI, May 30, 2017 — NVIDIA (NASDAQ: NVDA) today launched a partner program with the world’s leading original design manufacturers (ODM) — Foxconn, Inventec, Quanta and Wistron — to more rapidly meet the demands for AI cloud computing.

Through the NVIDIA HGX Partner Program, NVIDIA is providing each ODM with early access to the NVIDIA HGX reference architecture, NVIDIA GPU computing technologies and design guidelines. HGX is the same data center design used in Microsoft’s Project Olympus initiative, Facebook’s Big Basin systems and NVIDIA DGX-1 AI supercomputers.

Using HGX as a starter “recipe,” ODM partners can work with NVIDIA to more quickly design and bring to market a wide range of qualified GPU-accelerated systems for hyperscale data centers. Through the program, NVIDIA engineers will work closely with ODMs to help minimize the amount of time from design win to production deployments.

As the overall demand for AI computing resources has risen sharply over the past year, so has the market adoption and performance of NVIDIA’s GPU computing platform. Today, 10 of the world’s top 10 hyperscale businesses are using NVIDIA GPU accelerators in their data centers.

With new NVIDIA Volta architecture-based GPUs offering three times the performance of its predecessor, ODMs can feed the market demand with new products based on the latest NVIDIA technology available.

“Accelerated computing is evolving rapidly — in just one year we tripled the deep learning performance in our Tesla GPUs — and this is having a significant impact on the way systems are designed,” said Ian Buck, general manager of Accelerated Computing at NVIDIA. “Through our HGX partner program, device makers can ensure they’re offering the latest AI technologies to the growing community of cloud computing providers.”

Flexible, Upgradable Design
NVIDIA built the HGX reference design to meet the high-performance, efficiency and massive scaling requirements unique to hyperscale cloud environments. Highly configurable based on workload needs, HGX can easily combine GPUs and CPUs in a number of ways for high performance computing, deep learning training and deep learning inferencing.

The standard HGX design architecture includes eight NVIDIA Tesla GPU accelerators in the SXM2 form factor and connected in a cube mesh using NVIDIA NVLink high-speed interconnects and optimized PCIe topologies. With a modular design, HGX enclosures are suited for deployment in existing data center racks across the globe, using hyperscale CPU nodes as needed.

Both NVIDIA Tesla P100 and V100 GPU accelerators are compatible with HGX. This allows for immediate upgrades of all HGX-based products once V100 GPUs become available later this year.

HGX is an ideal reference architecture for cloud providers seeking to host the new NVIDIA GPU Cloud platform. The NVIDIA GPU Cloud platform manages a catalog of fully integrated and optimized deep learning framework containers, including Caffe2, Cognitive Toolkit, MXNet and TensorFlow.

“Through this new partner program with NVIDIA, we will be able to more quickly serve the growing demands of our customers, many of whom manage some of the largest data centers in the world,” said Taiyu Chou, general manager of Foxconn/Hon Hai Precision Ind Co., Ltd., and president of Ingrasys Technology Inc. “Early access to NVIDIA GPU technologies and design guidelines will help us more rapidly introduce innovative products for our customers’ growing AI computing needs.”

“Working more closely with NVIDIA will help us infuse a new level of innovation into data center infrastructure worldwide,” said Evan Chien, head of IEC China operations at Inventec Corporation. “Through our close collaboration, we will be able to more effectively address the compute-intensive AI needs of companies managing hyperscale cloud environments.”

“Tapping into NVIDIA’s AI computing expertise will allow us to immediately bring to market game-changing solutions to meet the new computing requirements of the AI era,” said Mike Yang, senior vice president at Quanta Computer Inc. and president at QCT.

“As a long-time collaborator with NVIDIA, we look forward to deepening our relationship so that we can meet the increasing computing needs of our hyperscale data center customers,” said Donald Hwang, chief technology officer and president of the Enterprise Business Group at Wistron. “Our customers are hungry for more GPU computing power to handle a variety of AI workloads, and through this new partnership we will be able to deliver new solutions faster.”

“We’ve collaborated with Ingrasys and NVIDIA to pioneer a new industry standard design to meet the growing demands of the new AI era,” said Kushagra Vaid, general manager and distinguished engineer, Azure Hardware Infrastructure, Microsoft Corp. “The HGX-1 AI accelerator has been developed as a component of Microsoft’s Project Olympus to achieve extreme performance scalability through the option for high-bandwidth interconnectivity for up to 32 GPUs.”

About NVIDIA
NVIDIA‘s (NASDAQ: NVDA) invention of the GPU in 1999 sparked the growth of the PC gaming market, redefined modern computer graphics and revolutionized parallel computing. More recently, GPU deep learning ignited modern AI — the next era of computing — with the GPU acting as the brain of computers, robots and self-driving cars that can perceive and understand the world. More information at http://nvidianews.nvidia.com/.


Source: NVIDIA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Companies D-Wave and Rigetti Again Face Stock Delisting

October 4, 2024

Both D-Wave (NYSE: QBTS) and Rigetti (Nasdaq: RGTI) are again facing stock delisting. This is a third time for D-Wave, which issued a press release today following notification by the SEC. Rigetti was notified of delisti Read more…

Alps Scientific Symposium Highlights AI’s Role in Tackling Science’s Biggest Challenges

October 4, 2024

ETH Zürich recently celebrated the launch of the AI-optimized “Alps” supercomputer with a scientific symposium focused on the future possibilities of scientific AI thanks to increased compute power and a flexible ar Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvidia GPUs). Recently, MLCommons introduced the results of its Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago today emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever physical processor they want, without making code changes, the Read more…

IBM Quantum Summit Evolves into Developer Conference

October 2, 2024

Instead of its usual quantum summit this year, IBM will hold its first IBM Quantum Developer Conference which the company is calling, “an exclusive, first-of-its-kind.” It’s planned as an in-person conference at th Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed that the company will release Falcon Shores as a GPU. The com Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvi Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago today emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever ph Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed t Read more…

How GenAI Will Impact Jobs In the Real World

September 30, 2024

There’s been a lot of fear, uncertainty, and doubt (FUD) about the potential for generative AI to take people’s jobs. The capability of large language model Read more…

IBM and NASA Launch Open-Source AI Model for Advanced Climate and Weather Research

September 25, 2024

IBM and NASA have developed a new AI foundation model for a wide range of climate and weather applications, with contributions from the Department of Energy’s Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Building the Quantum Economy — Chicago Style

September 24, 2024

Will there be regional winner in the global quantum economy sweepstakes? With visions of Silicon Valley’s iconic success in electronics and Boston/Cambridge� Read more…

How GPUs Are Embedded in the HPC Landscape

September 23, 2024

Grasping the basics of Graphics Processing Unit (GPU) architecture is crucial for understanding how these powerful processors function, particularly in high-per Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire