OLCF’s Titan Advances Delivery of Accelerated, High-Res Earth System Model

July 18, 2017

OAK RIDGE, Tenn., July 18, 2017 — A new integrated computational climate model developed to reduce uncertainties in future climate predictions marks the first successful attempt to bridge Earth systems with energy and economic models and large-scale human impact data. The integrated Earth System Model, or iESM, is being used to explore interactions among the physical climate system, biological components of the Earth system, and human systems.

By using supercomputers such as Titan, a large multidisciplinary team of scientists led by Peter Thornton of the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) had the power required to integrate massive codes that combine physical and biological processes in the Earth system with feedbacks from human activity.

“The model we developed and applied couples biospheric feedbacks from oceans, atmosphere, and land with human activities, such as fossil fuel emissions, agriculture, and land use, which eliminates important sources of uncertainty from projected climate outcomes,” said Thornton, leader of the Terrestrial Systems Modeling group in ORNL’s Environmental Sciences Division and deputy director of ORNL’s Climate Change Science Institute.

Titan is a 27-petaflop Cray XK7 machine with a hybrid CPU-GPU architecture managed by the Oak Ridge Leadership Computing Facility (OLCF), a DOE Office of Science User Facility located at ORNL.

Through the Advanced Scientific Computing Research Leadership Computing Challenge program, Thornton’s team was awarded 85 million compute hours to improve the Accelerated Climate Modeling for Energy (ACME) effort, a project sponsored by the Earth System Modeling program within DOE’s Office of Biological and Environmental Research. Currently, ACME collaborators are focused on developing an advanced climate model capable of simulating 80 years of historic and future climate variability and change in 3 weeks or less of computing effort.

Now in its third year, the project has achieved several milestones — notably the development of ACME version 1 and the successful inclusion of human factors in one of its component models, the iESM.

“What’s unique about ACME is that it’s pushing the system to a higher resolution than has been attempted before,” Thornton said. “It’s also pushing toward a more comprehensive simulation capability by including human dimensions and other advances, yielding the most detailed Earth system models to date.”

The Human Connection

To inform its Earth system models, the climate modeling community has a long history of using integrated assessment models — frameworks for describing humanity’s impact on Earth, including the source of global greenhouse gases, land use and land cover change, and other resource-related drivers of anthropogenic climate change.

Until now, researchers had not been able to directly couple large-scale human activity with an Earth system model. In fact, the novel iESM could mark a new era of complex and comprehensive modeling that reduces uncertainty by incorporating immediate feedbacks to socioeconomic variables for more consistent predictions.

The development of iESM started before the ACME initiative when a multilaboratory team aimed to add new human dimensions — such as how people affect the planet to produce and consume energy–to Earth system models. The model–now a part of the ACME human dimensions component–is being merged with ACME in preparation for ACME version 2.

Along with iESM, the ACME team has added enhancements to the land, atmosphere, and ocean components of their code. These include a more capable framework for calculating the cyclical flow of chemical elements and compounds like carbon, nitrogen, and water in the environment. The new ACME land model includes a fully-coupled reactive transport scheme for these biogeochemical processes. This capability will provide a more consistent connection between physical (thermal and hydrologic) and biological components of the simulation.

Perhaps the most significant advancement, however, is the introduction of the phosphorous cycle to the code. Phosphorous is an essential nutrient for life, moving from soil and sediment to plants and animals and back. ACME version 1 is the first global earth system model that includes this dynamic.

In addition to increasing the resolution of the model, and thus estimating new parameters, ongoing tuning and optimizing of ACME has brought the team closer to reaching its 80-years-in-3-weeks simulation speed goal. With the advances, the team can now run about 3 or 4 simulated years per day, about twice the output of earlier code versions.

“The overall ACME project not only involves developing these high-resolution models but also optimizing their performance on high-performance computing platforms that DOE has at its disposal — including Titan–to get to our target of 5 simulated years per day,” Thornton said.

Increased utilization of Titan’s GPUs is helping the project reach the next level. The OLCF’s Matthew Norman is working with Thornton’s team to offload various parts of ACME to GPUs, which excel at quickly executing repetitive calculations.

“ACME version 2 should make much more use of the GPUs to increase simulation performance, and there are other projects that are spin-off efforts using ACME that are targeting Summit [the OLCF’s next leadership-class machine] and future exascale platforms,” Norman said.

The OLCF is continuing to assist the team with data management via advanced monitoring and workflow tool support to help reduce the amount of time researchers need to get results. OLCF staff, including liaisons Valentine Anantharaj and Norman, are also helping with various tasks like debugging, scaling, and optimizing code.

“The liaisons are crucial for helping us understand where to look for problems when they arise and getting the best performance out of the Titan supercomputer,” Thornton said.

For iESM to take the next step, the representation of land surface between coupled models must become more consistent. The team also aims to include other dimensions, including water management and storage, agricultural productivity, and commodity pricing structures. This will yield better information about potential changes in water resource availability, allocation, and shortages under different climates.

“These improvements are vital since there is concern that fresh water resources might be the pinch point that gets felt first,” Thornton said.

ACME version 1 will be publicly released in late-2017 for analysis and use by other researchers. Results from the model will also contribute to the Coupled Model Intercomparison Project, which provides foundational material for climate change assessment reports.


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This