OLCF’s Titan Advances Delivery of Accelerated, High-Res Earth System Model

July 18, 2017

OAK RIDGE, Tenn., July 18, 2017 — A new integrated computational climate model developed to reduce uncertainties in future climate predictions marks the first successful attempt to bridge Earth systems with energy and economic models and large-scale human impact data. The integrated Earth System Model, or iESM, is being used to explore interactions among the physical climate system, biological components of the Earth system, and human systems.

By using supercomputers such as Titan, a large multidisciplinary team of scientists led by Peter Thornton of the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) had the power required to integrate massive codes that combine physical and biological processes in the Earth system with feedbacks from human activity.

“The model we developed and applied couples biospheric feedbacks from oceans, atmosphere, and land with human activities, such as fossil fuel emissions, agriculture, and land use, which eliminates important sources of uncertainty from projected climate outcomes,” said Thornton, leader of the Terrestrial Systems Modeling group in ORNL’s Environmental Sciences Division and deputy director of ORNL’s Climate Change Science Institute.

Titan is a 27-petaflop Cray XK7 machine with a hybrid CPU-GPU architecture managed by the Oak Ridge Leadership Computing Facility (OLCF), a DOE Office of Science User Facility located at ORNL.

Through the Advanced Scientific Computing Research Leadership Computing Challenge program, Thornton’s team was awarded 85 million compute hours to improve the Accelerated Climate Modeling for Energy (ACME) effort, a project sponsored by the Earth System Modeling program within DOE’s Office of Biological and Environmental Research. Currently, ACME collaborators are focused on developing an advanced climate model capable of simulating 80 years of historic and future climate variability and change in 3 weeks or less of computing effort.

Now in its third year, the project has achieved several milestones — notably the development of ACME version 1 and the successful inclusion of human factors in one of its component models, the iESM.

“What’s unique about ACME is that it’s pushing the system to a higher resolution than has been attempted before,” Thornton said. “It’s also pushing toward a more comprehensive simulation capability by including human dimensions and other advances, yielding the most detailed Earth system models to date.”

The Human Connection

To inform its Earth system models, the climate modeling community has a long history of using integrated assessment models — frameworks for describing humanity’s impact on Earth, including the source of global greenhouse gases, land use and land cover change, and other resource-related drivers of anthropogenic climate change.

Until now, researchers had not been able to directly couple large-scale human activity with an Earth system model. In fact, the novel iESM could mark a new era of complex and comprehensive modeling that reduces uncertainty by incorporating immediate feedbacks to socioeconomic variables for more consistent predictions.

The development of iESM started before the ACME initiative when a multilaboratory team aimed to add new human dimensions — such as how people affect the planet to produce and consume energy–to Earth system models. The model–now a part of the ACME human dimensions component–is being merged with ACME in preparation for ACME version 2.

Along with iESM, the ACME team has added enhancements to the land, atmosphere, and ocean components of their code. These include a more capable framework for calculating the cyclical flow of chemical elements and compounds like carbon, nitrogen, and water in the environment. The new ACME land model includes a fully-coupled reactive transport scheme for these biogeochemical processes. This capability will provide a more consistent connection between physical (thermal and hydrologic) and biological components of the simulation.

Perhaps the most significant advancement, however, is the introduction of the phosphorous cycle to the code. Phosphorous is an essential nutrient for life, moving from soil and sediment to plants and animals and back. ACME version 1 is the first global earth system model that includes this dynamic.

In addition to increasing the resolution of the model, and thus estimating new parameters, ongoing tuning and optimizing of ACME has brought the team closer to reaching its 80-years-in-3-weeks simulation speed goal. With the advances, the team can now run about 3 or 4 simulated years per day, about twice the output of earlier code versions.

“The overall ACME project not only involves developing these high-resolution models but also optimizing their performance on high-performance computing platforms that DOE has at its disposal — including Titan–to get to our target of 5 simulated years per day,” Thornton said.

Increased utilization of Titan’s GPUs is helping the project reach the next level. The OLCF’s Matthew Norman is working with Thornton’s team to offload various parts of ACME to GPUs, which excel at quickly executing repetitive calculations.

“ACME version 2 should make much more use of the GPUs to increase simulation performance, and there are other projects that are spin-off efforts using ACME that are targeting Summit [the OLCF’s next leadership-class machine] and future exascale platforms,” Norman said.

The OLCF is continuing to assist the team with data management via advanced monitoring and workflow tool support to help reduce the amount of time researchers need to get results. OLCF staff, including liaisons Valentine Anantharaj and Norman, are also helping with various tasks like debugging, scaling, and optimizing code.

“The liaisons are crucial for helping us understand where to look for problems when they arise and getting the best performance out of the Titan supercomputer,” Thornton said.

For iESM to take the next step, the representation of land surface between coupled models must become more consistent. The team also aims to include other dimensions, including water management and storage, agricultural productivity, and commodity pricing structures. This will yield better information about potential changes in water resource availability, allocation, and shortages under different climates.

“These improvements are vital since there is concern that fresh water resources might be the pinch point that gets felt first,” Thornton said.

ACME version 1 will be publicly released in late-2017 for analysis and use by other researchers. Results from the model will also contribute to the Coupled Model Intercomparison Project, which provides foundational material for climate change assessment reports.


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Like Nvidia, Google’s Moat Draws Interest from DOJ

October 14, 2024

A "moat" is a common term associated with Nvidia and its proprietary products that lock customers into their hardware and software. Another moat breakdown should have them concerned. The U.S. Department of Justice is Read more…

Recipe for Scaling: ARQUIN Framework for Simulating a Distributed Quantum Computing System

October 14, 2024

One of the most difficult problems with quantum computing relates to increasing the size of the quantum computer. Researchers globally are seeking to solve this “challenge of scale.” To bring quantum scaling closer Read more…

Nvidia Is Increasingly the Secret Sauce in AI Deployments, But You Still Need Experience

October 14, 2024

I’ve been through a number of briefings from different vendors from IBM to HP, and there is one constant: they are all leaning heavily on Nvidia for their AI services strategy. That may be a best practice, but Nvidia d Read more…

Zapata Computing, Early Quantum-AI Software Specialist, Ceases Operations

October 14, 2024

Zapata Computing, which was founded in 2017 as a Harvard spinout specializing in quantum software and later pivoted to an AI focus, is ceasing operations, according to an SEC filing last week. Zapata had gone public one Read more…

AMD Announces Flurry of New Chips

October 10, 2024

AMD today announced several new chips including its newest Instinct GPU — the MI325X — as it chases Nvidia. Other new devices announced at the company event in San Francisco included the 5th Gen AMD EPYC processors, Read more…

NSF Grants $107,600 to English Professors to Research Aurora Supercomputer

October 9, 2024

The National Science Foundation has granted $107,600 to English professors at US universities to unearth the mysteries of the Aurora supercomputer. The two-year grant recipients will write up what the Aurora supercompute Read more…

Nvidia Is Increasingly the Secret Sauce in AI Deployments, But You Still Need Experience

October 14, 2024

I’ve been through a number of briefings from different vendors from IBM to HP, and there is one constant: they are all leaning heavily on Nvidia for their AI Read more…

NSF Grants $107,600 to English Professors to Research Aurora Supercomputer

October 9, 2024

The National Science Foundation has granted $107,600 to English professors at US universities to unearth the mysteries of the Aurora supercomputer. The two-year Read more…

VAST Looks Inward, Outward for An AI Edge

October 9, 2024

There’s no single best way to respond to the explosion of data and AI. Sometimes you need to bring everything into your own unified platform. Other times, you Read more…

Google Reports Progress on Quantum Devices beyond Supercomputer Capability

October 9, 2024

A Google-led team of researchers has presented more evidence that it’s possible to run productive circuits on today’s near-term intermediate scale quantum d Read more…

At 50, Foxconn Celebrates Graduation from Connectors to AI Supercomputing

October 8, 2024

Foxconn is celebrating its 50th birthday this year. It started by making connectors, then moved to systems, and now, a supercomputer. The company announced it w Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvi Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago this week emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whateve Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed t Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire