Open-Source Supercomputer Code WarpX Presents Path for Shrinking Particle Accelerators

March 19, 2021

March 19, 2021 — When we think of the particle accelerators that elucidate the building blocks of nature, we think of spectacular and massive facilities like the 27-kilometer-circumference Large Hadron Collider (LHC), the proton-crashing instrument at CERN famous for the Higgs boson discovery.

But what if there were much smaller alternatives to the giant machines that could probe physics beyond the large colliders’ reach? There just may be such a possibility: laser-plasma accelerators, “a promising candidate to significantly reduce the cost and improve the compactness of beam generators,” says Jean-Luc Vay, a senior physicist at Lawrence Berkeley National Laboratory and head of the Accelerator Modeling Program in the lab’s Accelerator Technology and Applied Physics Division.

Envisioned since the late 1970s, laser-based devices that boost charged particles to near-light speed could be tens to hundreds of times smaller than current machines. With these small, affordable particle accelerators, scientists could conduct experiments on subatomic particles by accelerating particle beams in much shorter distances than now. In addition, by generating extremely intense bursts of light – with remarkable physical systems called plasma mirrors – researchers could explore quantum electrodynamic phenomena beyond the reach of even the biggest particle accelerators like LHC, including neutron stars, black-hole horizons and other violent astrophysical events.

To help develop these futuristic devices, teams led by Vay and Henri Vincenti, a research scientist at France’s Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, have developed WarpX, an open-source code that simulates plasmas produced when high-powered lasers fire into solids or gases. “In this context,” Vincenti says, “our work consists in using massively parallel simulations to find realistic experimental schemes based on high-intensity laser-plasma interactions.” These designs could help generate relativistic particle beams – fermions, hadrons – with properties at least as good as those from conventional accelerators.

A snapshot from a three-dimensional WarpX simulation of a laser-driven plasma accelerator. The laser (red) propagates to create a plasma wake (yellow and blue) that accelerates a small electron beam (white) to high energy. A mesh refinement patch (green box) increases the resolution and improves the accuracy around the electron beam. Image courtesy of Lawrence Berkeley National Laboratory.

The team has developed WarpX through the Department of Energy (DOE) Exascale Computing Project (ECP). EPC has paved the way for the next generation of high-performance computers, which will be able to conduct one million trillion operations per second. The name WarpX is a combination of “X” for exascale and “warp,” a previous-version code name derived from “warp speed,” the science-fiction concept of faster-than-light travel.

Vay, Vincenti and their colleagues have received a renewal allocation of computing time through DOE’s Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. The award includes 110,000 node-hours on Summit, Oak Ridge National Laboratory’s IBM AC922 machine, and 600,000 node-hours on Theta, a Cray XC40 machine at Argonne National Laboratory. Summit is the United States’ most powerful high-performance computer, running primarily on graphics processing units (GPUs), and Theta is one of the biggest machines driven by central processing units (CPUs). “Our code was first targeted at CPUs and ported to GPUs recently,” Vay says. “As we are moving to using GPUs routinely for production, Theta provides an excellent platform during the transition.”

The INCITE award lets the team explore an effect that can occur when a high-powered laser hits a silica plate. Under the right conditions, silicon ions and electrons are torn from the plate’s surface to form a dense plasma that behaves like a parabolic mirror, or a relativistic plasma mirror, that reflects charged particles at velocities approaching the speed of light. The team will simulate the use of such a mirror to inject electron bunches into high-powered laser beams capable of further accelerating the electrons over distances that are tens to thousands of times shorter than those which conventional accelerators use. Vay says compact electron accelerators could lead to applications in high-energy physics, particle therapy, sterilization of equipment and liquids, materials science, chemistry, biology and pharmacology.

The team also is exploring using relativistic plasma mirrors to produce extreme light intensities. WarpX simulations already have shown that these mirrors could focus light to intensities more than a thousand times greater than today’s most powerful lasers. In optimal laser-plasma conditions, such devices could potentially achieve intensities close to the so-called Schwinger limit, where the quantum vacuum becomes unstable, leading to copious production of electron-positron pairs. Scientists are eager to study such phenomena further because they occur in mysterious, violent astrophysical events such as gamma-ray bursts.

The team faces several challenges in developing WarpX. As a particle-in-cell code, it describes plasma as a mesh of cells, each populated with data describing the plasma inside. Besides temperature, velocity and electromagnetic charge, the code captures a staggering range of time and space scales. Vital events may take a few quadrillionths of a second while others, in the same simulation, can take microseconds. With some events taking one billionth the length of others, the challenge is the equivalent of tracking every second of a 31-year-old person’s life. The lengths also can expand to 1 billion. Modeling micron laser wavelengths in a 1-kilometer accelerator is akin to shrinking the border between California and Nevada down to a millimeter.

This extreme scope makes simulations especially challenging. The team is pioneering ways to apply Maxwell’s equations, which govern how electromagnetic waves (such as lasers) interact with matter, and Lorentz transformations, which slip simulated objects (like ions or electrons) traveling near the speed of light from one type of mathematical grid to another.

The WarpX team’s greatest challenge is to implement these advanced features while developing an ability to focus on simulation events at virtually any level of detail. The goal is to use WarpX to zoom in on the small events and short time scales through adaptive mesh refinement, which works out details in one part of a simulation without crunching the numbers for the full simulation. Here the team also draws on DOE’s AMReX code library, developed through the ECP at Berkeley Lab, Argonne and the National Renewable Energy Laboratory in Golden, Colorado.

“Mesh refinement is particularly difficult to implement in an electromagnetic particle-in-cell code,” Vay says. “There are many numerical issues that need to be addressed. We have studied, and are continuing to study, the various numerical issues at hand independently, and we have developed mitigation strategies. Tests are scheduled to assess the overall performance once all the pieces are in place.”


Source: US DOE ASCR Discovery

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

U.S. Quantum Director Charles Tahan Calls for NQIA Reauthorization Now

February 29, 2024

(February 29, 2024) Origin stories make the best superhero movies. I am no superhero, but I still remember what my undergraduate thesis advisor said when I told him that I wanted to design quantum computers in graduate s Read more…

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift is propelled by the advent of artificial intelligence (AI), Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure topic called supercomputing, but when it was announced that S Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with technology itself. During this early phase of GenAI technol Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A week earlier a team working with St. Jude Children’s Hospita Read more…

AWS Solution Channel

Shutterstock 2283618597

Deep-dive into Ansys Fluent performance on Ansys Gateway powered by AWS

Today, we’re going to deep-dive into the performance and associated cost of running computational fluid dynamics (CFD) simulations on AWS using Ansys Fluent through the Ansys Gateway powered by AWS (or just “Ansys Gateway” for the rest of this post). Read more…

Argonne Aurora Walk About Video

February 27, 2024

In November 2023, Aurora was ranked #2 on the Top 500 list. That ranking was with half of Aurora running the HPL benchmark. It seems after much delay, 2024 will finally be Aurora's time in the spotlight. For those cur Read more…

Royalty-free stock illustration ID: 1988202119

pNFS Provides Performance and New Possibilities

February 29, 2024

At the cusp of a new era in technology, enterprise IT stands on the brink of the most profound transformation since the Internet's inception. This seismic shift Read more…

Celebrating 35 Years of HPCwire by Recognizing 35 HPC Trailblazers

February 29, 2024

In 1988, a new IEEE conference debuted in Orlando, Florida. The planners were expecting 200-300 attendees because the conference was focused on an obscure t Read more…

Forrester’s State of AI Report Suggests a Wave of Disruption Is Coming

February 28, 2024

The explosive growth of generative artificial intelligence (GenAI) heralds opportunity and disruption across industries. It is transforming how we interact with Read more…

Q-Roundup: Google on Optimizing Circuits; St. Jude Uses GenAI; Hunting Majorana; Global Movers

February 27, 2024

Last week, a Google-led team reported developing a new tool - AlphaTensor Quantum - based on deep reinforcement learning (DRL) to better optimize circuits. A we Read more…

South African Cluster Competition Team Enjoys Big Texas HPC Adventure

February 26, 2024

Texas A&M University's High-Performance Research Computing (HPRC) hosted an elite South African delegation on February 8 - undergraduate computer science (a Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performa Read more…

Training of 1-Trillion Parameter Scientific AI Begins

November 13, 2023

A US national lab has started training a massive AI brain that could ultimately become the must-have computing resource for scientific researchers. Argonne N Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia Wins SC23, But Gets Socked by Microsoft’s AI Chip

November 16, 2023

Nvidia was invisible with a very small booth and limited floor presence, but thanks to its sheer AI dominance, it was a winner at the Supercomputing 2023. Nv Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Analyst Panel Says Take the Quantum Computing Plunge Now…

November 27, 2023

Should you start exploring quantum computing? Yes, said a panel of analysts convened at Tabor Communications HPC and AI on Wall Street conference earlier this y Read more…

Royalty-free stock illustration ID: 1675260034

RISC-V Summit: Ghosts of x86 and ARM Linger

November 12, 2023

Editor note: See SC23 RISC-V events at the end of the article At this year's RISC-V Summit, the unofficial motto was "drain the swamp," that is, x86 and Read more…

China Deploys Massive RISC-V Server in Commercial Cloud

November 8, 2023

If the U.S. government intends to curb China's adoption of emerging RISC-V architecture to develop homegrown chips, it may be getting late. Last month, China Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Chinese Company Developing 64-core RISC-V Chip with Tech from U.S.

November 13, 2023

Chinese chip maker SophGo is developing a RISC-V chip based on designs from the U.S. company SiFive, which highlights challenges the U.S. government may face in Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Royalty-free stock illustration ID: 1182444949

Forget Zettascale, Trouble is Brewing in Scaling Exascale Supercomputers

November 14, 2023

In 2021, Intel famously declared its goal to get to zettascale supercomputing by 2027, or scaling today's Exascale computers by 1,000 times. Moving forward t Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire