ORNL-Designed Algorithm Leverages Titan to Create High-Performing Deep Neural Networks

November 29, 2017

Nov. 29, 2017 — Deep neural networks—a form of artificial intelligence—have demonstrated mastery of tasks once thought uniquely human. Their triumphs have ranged from identifying animals in images, to recognizing human speech, to winning complex strategy games, among other successes.

Now, researchers are eager to apply this computational technique—commonly referred to as deep learning—to some of science’s most persistent mysteries. But because scientific data often looks much different from the data used for animal photos and speech, developing the right artificial neural network can feel like an impossible guessing game for nonexperts. To expand the benefits of deep learning for science, researchers need new tools to build high-performing neural networks that don’t require specialized knowledge.

Using the Titan supercomputer, a research team led by Robert Patton of the US Department of Energy’s(DOE’s) Oak Ridge National Laboratory (ORNL) has developed an evolutionary algorithm capable of generating custom neural networks that match or exceed the performance of handcrafted artificial intelligence systems. Better yet, by leveraging the GPU computing power of the Cray XK7 Titan—the leadership-class machine managed by the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility at ORNL—these auto-generated networks can be produced quickly, in a matter of hours as opposed to the months needed using conventional methods.

The research team’s algorithm, called MENNDL (Multinode Evolutionary Neural Networks for Deep Learning), is designed to evaluate, evolve, and optimize neural networks for unique datasets. Scaled across Titan’s 18,688 GPUs, MENNDL can test and train thousands of potential networks for a science problem simultaneously, eliminating poor performers and averaging high performers until an optimal network emerges. The process eliminates much of the time-intensive, trial-and-error tuning traditionally required of machine learning experts.

“There’s no clear set of instructions scientists can follow to tweak networks to work for their problem,” said research scientist Steven Young, a member of ORNL’s Nature Inspired Machine Learning team. “With MENNDL, they no longer have to worry about designing a network. Instead, the algorithm can quickly do that for them, while they focus on their data and ensuring the problem is well-posed.”

Pinning down parameters

Inspired by the brain’s web of neurons, deep neural networks are a relatively old concept in neuroscience and computing, first popularized by two University of Chicago researchers in the 1940s. But because of limits in computing power, it wasn’t until recently that researchers had success in training machines to independently interpret data.

Today’s neural networks can consist of thousands or millions of simple computational units—the “neurons”—arranged in stacked layers, like the rows of figures spaced across a foosball table. During one common form of training, a network is assigned a task (e.g., to find photos with cats) and fed a set of labeled data (e.g., photos of cats and photos without cats). As the network pushes the data through each successive layer, it makes correlations between visual patterns and predefined labels, assigning values to specific features (e.g., whiskers and paws). These values contribute to the weights that define the network’s model parameters. During training, the weights are continually adjusted until the final output matches the targeted goal. Once the network learns to perform from training data, it can then be tested against unlabeled data.

Although many parameters of a neural network are determined during the training process, initial model configurations must be set manually. These starting points, known as hyperparameters, include variables like the order, type, and number of layers in a network.

Finding the optimal set of hyperparameters can be the key to efficiently applying deep learning to an unusual dataset. “You have to experimentally adjust these parameters because there’s no book you can look in and say, ‘These are exactly what your hyperparameters should be,’” Young said. “What we did is use this evolutionary algorithm on Titan to find the best hyperparameters for varying types of datasets.”

Unlocking that potential, however, required some creative software engineering by Patton’s team. MENNDL homes in on a neural network’s optimal hyperparameters by assigning a neural network to each Titan node. The team designed MENNDL to use a deep learning framework called Caffe to carry out the computation, relying on the parallel computing Message Passing Interface standard to divide and distribute data among nodes. As Titan works through individual networks, new data is fed to the system’s nodes asynchronously, meaning once a node completes a task, it’s quickly assigned a new task independent of the other nodes’ status. This ensures that the 27-petaflop Titan stays busy combing through possible configurations.

“Designing the algorithm to really work at that scale was one of the challenges,” Young said. “To really leverage the machine, we set up MENNDL to generate a queue of individual networks to send to the nodes for evaluation as soon as computing power becomes available.”

To demonstrate MENNDL’s versatility, the team applied the algorithm to several datasets, training networks to identify sub-cellular structures for medical research, classify satellite images with clouds, and categorize high-energy physics data. The results matched or exceeded the performance of networks designed by experts.

Networking neutrinos

One science domain in which MENNDL is already proving its value is neutrino physics. Neutrinos, ghost-like particles that pass through your body at a rate of trillions per second, could play a major role in explaining the formation of the early universe and the nature of matter—if only scientists knew more about them.

Large detectors at DOE’s Fermi National Accelerator Laboratory (Fermilab) use high-intensity beams to study elusive neutrino reactions with ordinary matter. The devices capture a large sample of neutrino interactions that can be transformed into basic images through a process called “reconstruction.” Like a slow-motion replay at a sporting event, these reconstructions can help physicists better understand neutrino behavior.

“They almost look like a picture of the interaction,” said Gabriel Perdue, an associate scientist at Fermilab.

Perdue leads an effort to integrate neural networks into the classification and analysis of detector data. The work could improve the efficiency of some measurements, help physicists understand how certain they can be about their analyses, and lead to new avenues of inquiry.

Teaming up with Patton’s team under a 2016 Director’s Discretionary application on Titan, Fermilab researchers produced a competitive classification network in support of a neutrino scattering experiment called MINERvA (Main Injector Experiment for v-A). The task, known as vertex reconstruction, required a network to analyze images and precisely identify the location where neutrinos interact with the detector—a challenge for events that produce many particles.

In only 24 hours, MENNDL produced optimized networks that outperformed handcrafted networks—an achievement that would have taken months for Fermilab researchers. To identify the high-performing network, MENNDL evaluated approximately 500,000 neural networks. The training data consisted of 800,000 images of neutrino events, steadily processed on 18,000 of Titan’s nodes.

“You need something like MENNDL to explore this effectively infinite space of possible networks, but you want to do it efficiently,” Perdue said. “What Titan does is bring the time to solution down to something practical.”

Having recently been awarded another allocation under the Advanced Scientific Computing Research Leadership Computing Challenge program, Perdue’s team is building off its deep learning success by applying MENDDL to additional high-energy physics datasets to generate optimized algorithms. In addition to improved physics measurements, the results could provide insight into how and why machines learn.

“We’re just getting started,” Perdue said. “I think we’ll learn really interesting things about how deep learning works, and we’ll also have better networks to do our physics. The reason we’re going through all this work is because we’re getting better performance, and there’s real potential to get more.”

AI meets exascale

When Titan debuted 5 years ago, its GPU-accelerated architecture boosted traditional modeling and simulation to new levels of detail. Since then, GPUs, which excel at carrying out hundreds of calculations simultaneously, have become the go-to processor for deep learning. That fortuitous development made Titan a powerful tool for exploring artificial intelligence at supercomputer scales.

With the OLCF’s next leadership-class system, Summit, set to come online in 2018, deep learning researchers expect to take this blossoming technology even further. Summit builds on the GPU revolution pioneered by Titan and is expected to deliver more than five times the performance of its predecessor. The IBM system will contain more than 27,000 of Nvidia’s newest Volta GPUs in addition to more than 9,000 IBM Power9 CPUs. Furthermore, because deep learning requires less mathematical precision than other types of scientific computing, Summit could potentially deliver exascale-level performance for deep learning problems—the equivalent of a billion billion calculations per second.

“That means we’ll be able to evaluate larger networks much faster and evolve many more generations of networks in less time,” Young said.

In addition to preparing for new hardware, Patton’s team continues to develop MENNDL and explore other types of experimental techniques, including neuromorphic computing, another biologically inspired computing concept.

“One thing we’re looking at going forward is evolving deep learning networks from stacked layers to graphs of layers that can split and then merge later,” Young said. “These networks with branches excel at analyzing things at multiple scales, such as a closeup photograph in comparison to a wide-angle shot. When you have 20,000 GPUs available, you can actually start to think about a problem like that.”


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Introduces Larger-Than-Ever IPU-Based Pods

October 22, 2021

Graphcore and its “Intelligent Processing Units” (IPUs) emerged from stealth in 2016 and launched its second-generation IPU in 2020. While the company has also launched its IPUs in a variety of form factors over the Read more…

Quantum Chemistry Project to Be Among the First on EuroHPC’s LUMI System

October 22, 2021

Finland’s CSC has just installed the first module of LUMI, a 550-peak petaflops system supported by the European Union’s EuroHPC Joint Undertaking. While LUMI -- pictured in the header -- isn’t slated to complete i Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat for that approach), announced it was expanding into gate-based Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the power of Fugaku, the current top-ranked supercomputer in the wor Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 537899029

Running GROMACS on GPU instances

Comparing the performance of real applications across different Amazon Elastic Compute Cloud (Amazon EC2) instance types is the best way we’ve found for finding optimal configurations for HPC applications here at AWS. Read more…

Faster Optical Switch that Operates at ‘Room Temp’ Developed by IBM, Skolkovo Researchers

October 19, 2021

Optical switching technology holds great promise for many applications but hot operating temperatures have been a key obstacle slowing progress. Now, a new optical switching device that can operate at room temperatures a Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

LLNL Prepares the Water and Power Infrastructure for El Capitan

October 21, 2021

When it’s (ostensibly) ready in early 2023, El Capitan is expected to deliver in excess of two exaflops of peak computing power – around four times the powe Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Quantum Workforce – NSTC Report Highlights Need for International Talent

October 13, 2021

Attracting and training the needed quantum workforce to fuel the ongoing quantum information sciences (QIS) revolution is a hot topic these days. Last week, the U.S. National Science and Technology Council issued a report – The Role of International Talent in Quantum Information Science... Read more…

Eni Returns to HPE for ‘HPC4’ Refresh via GreenLake

October 13, 2021

Italian energy company Eni is upgrading its HPC4 system with new gear from HPE that will be installed in Eni’s Green Data Center in Ferrera Erbognone (a provi Read more…

The Blueprint for the National Strategic Computing Reserve

October 12, 2021

Over the last year, the HPC community has been buzzing with the possibility of a National Strategic Computing Reserve (NSCR). An in-utero brainchild of the COVID-19 High-Performance Computing Consortium, an NSCR would serve as a Merchant Marine for urgent computing... Read more…

UCLA Researchers Report Largest Chiplet Design and Early Prototyping

October 12, 2021

What’s the best path forward for large-scale chip/system integration? Good question. Cerebras has set a high bar with its wafer scale engine 2 (WSE-2); it has 2.6 trillion transistors, including 850,000 cores, and was fabricated using TSMC’s 7nm process on a roughly 8” x 8” silicon footprint. Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

HPCwire