ORNL-Designed Algorithm Leverages Titan to Create High-Performing Deep Neural Networks

November 29, 2017

Nov. 29, 2017 — Deep neural networks—a form of artificial intelligence—have demonstrated mastery of tasks once thought uniquely human. Their triumphs have ranged from identifying animals in images, to recognizing human speech, to winning complex strategy games, among other successes.

Now, researchers are eager to apply this computational technique—commonly referred to as deep learning—to some of science’s most persistent mysteries. But because scientific data often looks much different from the data used for animal photos and speech, developing the right artificial neural network can feel like an impossible guessing game for nonexperts. To expand the benefits of deep learning for science, researchers need new tools to build high-performing neural networks that don’t require specialized knowledge.

Using the Titan supercomputer, a research team led by Robert Patton of the US Department of Energy’s(DOE’s) Oak Ridge National Laboratory (ORNL) has developed an evolutionary algorithm capable of generating custom neural networks that match or exceed the performance of handcrafted artificial intelligence systems. Better yet, by leveraging the GPU computing power of the Cray XK7 Titan—the leadership-class machine managed by the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility at ORNL—these auto-generated networks can be produced quickly, in a matter of hours as opposed to the months needed using conventional methods.

The research team’s algorithm, called MENNDL (Multinode Evolutionary Neural Networks for Deep Learning), is designed to evaluate, evolve, and optimize neural networks for unique datasets. Scaled across Titan’s 18,688 GPUs, MENNDL can test and train thousands of potential networks for a science problem simultaneously, eliminating poor performers and averaging high performers until an optimal network emerges. The process eliminates much of the time-intensive, trial-and-error tuning traditionally required of machine learning experts.

“There’s no clear set of instructions scientists can follow to tweak networks to work for their problem,” said research scientist Steven Young, a member of ORNL’s Nature Inspired Machine Learning team. “With MENNDL, they no longer have to worry about designing a network. Instead, the algorithm can quickly do that for them, while they focus on their data and ensuring the problem is well-posed.”

Pinning down parameters

Inspired by the brain’s web of neurons, deep neural networks are a relatively old concept in neuroscience and computing, first popularized by two University of Chicago researchers in the 1940s. But because of limits in computing power, it wasn’t until recently that researchers had success in training machines to independently interpret data.

Today’s neural networks can consist of thousands or millions of simple computational units—the “neurons”—arranged in stacked layers, like the rows of figures spaced across a foosball table. During one common form of training, a network is assigned a task (e.g., to find photos with cats) and fed a set of labeled data (e.g., photos of cats and photos without cats). As the network pushes the data through each successive layer, it makes correlations between visual patterns and predefined labels, assigning values to specific features (e.g., whiskers and paws). These values contribute to the weights that define the network’s model parameters. During training, the weights are continually adjusted until the final output matches the targeted goal. Once the network learns to perform from training data, it can then be tested against unlabeled data.

Although many parameters of a neural network are determined during the training process, initial model configurations must be set manually. These starting points, known as hyperparameters, include variables like the order, type, and number of layers in a network.

Finding the optimal set of hyperparameters can be the key to efficiently applying deep learning to an unusual dataset. “You have to experimentally adjust these parameters because there’s no book you can look in and say, ‘These are exactly what your hyperparameters should be,’” Young said. “What we did is use this evolutionary algorithm on Titan to find the best hyperparameters for varying types of datasets.”

Unlocking that potential, however, required some creative software engineering by Patton’s team. MENNDL homes in on a neural network’s optimal hyperparameters by assigning a neural network to each Titan node. The team designed MENNDL to use a deep learning framework called Caffe to carry out the computation, relying on the parallel computing Message Passing Interface standard to divide and distribute data among nodes. As Titan works through individual networks, new data is fed to the system’s nodes asynchronously, meaning once a node completes a task, it’s quickly assigned a new task independent of the other nodes’ status. This ensures that the 27-petaflop Titan stays busy combing through possible configurations.

“Designing the algorithm to really work at that scale was one of the challenges,” Young said. “To really leverage the machine, we set up MENNDL to generate a queue of individual networks to send to the nodes for evaluation as soon as computing power becomes available.”

To demonstrate MENNDL’s versatility, the team applied the algorithm to several datasets, training networks to identify sub-cellular structures for medical research, classify satellite images with clouds, and categorize high-energy physics data. The results matched or exceeded the performance of networks designed by experts.

Networking neutrinos

One science domain in which MENNDL is already proving its value is neutrino physics. Neutrinos, ghost-like particles that pass through your body at a rate of trillions per second, could play a major role in explaining the formation of the early universe and the nature of matter—if only scientists knew more about them.

Large detectors at DOE’s Fermi National Accelerator Laboratory (Fermilab) use high-intensity beams to study elusive neutrino reactions with ordinary matter. The devices capture a large sample of neutrino interactions that can be transformed into basic images through a process called “reconstruction.” Like a slow-motion replay at a sporting event, these reconstructions can help physicists better understand neutrino behavior.

“They almost look like a picture of the interaction,” said Gabriel Perdue, an associate scientist at Fermilab.

Perdue leads an effort to integrate neural networks into the classification and analysis of detector data. The work could improve the efficiency of some measurements, help physicists understand how certain they can be about their analyses, and lead to new avenues of inquiry.

Teaming up with Patton’s team under a 2016 Director’s Discretionary application on Titan, Fermilab researchers produced a competitive classification network in support of a neutrino scattering experiment called MINERvA (Main Injector Experiment for v-A). The task, known as vertex reconstruction, required a network to analyze images and precisely identify the location where neutrinos interact with the detector—a challenge for events that produce many particles.

In only 24 hours, MENNDL produced optimized networks that outperformed handcrafted networks—an achievement that would have taken months for Fermilab researchers. To identify the high-performing network, MENNDL evaluated approximately 500,000 neural networks. The training data consisted of 800,000 images of neutrino events, steadily processed on 18,000 of Titan’s nodes.

“You need something like MENNDL to explore this effectively infinite space of possible networks, but you want to do it efficiently,” Perdue said. “What Titan does is bring the time to solution down to something practical.”

Having recently been awarded another allocation under the Advanced Scientific Computing Research Leadership Computing Challenge program, Perdue’s team is building off its deep learning success by applying MENDDL to additional high-energy physics datasets to generate optimized algorithms. In addition to improved physics measurements, the results could provide insight into how and why machines learn.

“We’re just getting started,” Perdue said. “I think we’ll learn really interesting things about how deep learning works, and we’ll also have better networks to do our physics. The reason we’re going through all this work is because we’re getting better performance, and there’s real potential to get more.”

AI meets exascale

When Titan debuted 5 years ago, its GPU-accelerated architecture boosted traditional modeling and simulation to new levels of detail. Since then, GPUs, which excel at carrying out hundreds of calculations simultaneously, have become the go-to processor for deep learning. That fortuitous development made Titan a powerful tool for exploring artificial intelligence at supercomputer scales.

With the OLCF’s next leadership-class system, Summit, set to come online in 2018, deep learning researchers expect to take this blossoming technology even further. Summit builds on the GPU revolution pioneered by Titan and is expected to deliver more than five times the performance of its predecessor. The IBM system will contain more than 27,000 of Nvidia’s newest Volta GPUs in addition to more than 9,000 IBM Power9 CPUs. Furthermore, because deep learning requires less mathematical precision than other types of scientific computing, Summit could potentially deliver exascale-level performance for deep learning problems—the equivalent of a billion billion calculations per second.

“That means we’ll be able to evaluate larger networks much faster and evolve many more generations of networks in less time,” Young said.

In addition to preparing for new hardware, Patton’s team continues to develop MENNDL and explore other types of experimental techniques, including neuromorphic computing, another biologically inspired computing concept.

“One thing we’re looking at going forward is evolving deep learning networks from stacked layers to graphs of layers that can split and then merge later,” Young said. “These networks with branches excel at analyzing things at multiple scales, such as a closeup photograph in comparison to a wide-angle shot. When you have 20,000 GPUs available, you can actually start to think about a problem like that.”


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI Silicon Startup Graphcore Launches Channel Partner Program

September 23, 2020

AI compute platform vendor Graphcore has launched its first formal global channel partner program to promote and boost the sales of its AI processors and blade computing products. The formalized, all-new Graphcore Eli Read more…

By Todd R. Weiss

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s second generation N-series platform. The chip IP vendor said the Read more…

By Tiffany Trader

Microsoft’s Azure Quantum Platform Now Offers Toshiba’s ‘Simulated Bifurcation Machine’

September 22, 2020

While pure-play quantum computing (QC) gets most of the QC-related attention, there’s also been steady progress adapting quantum methods for select use on classical computers. Today, Microsoft announced that Toshiba’ Read more…

By John Russell

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availability of instances with Nvidia’s newest GPU, the A100. OCI als Read more…

By John Russell

IBM, CQC Enable Cloud-based Quantum Random Number Generation

September 21, 2020

IBM and Cambridge Quantum Computing (CQC) have partnered to achieve progress on one of the major business aspirations for quantum computing – the goal of generating verified, truly random numbers that can be used for a Read more…

By Todd R. Weiss

AWS Solution Channel

Next-generation aerospace modeling and simulation: benchmarking Amazon Web Services High Performance Computing services

The aerospace industry has been using Computational Fluid Dynamics (CFD) for decades to create and optimize designs digitally, from the largest passenger planes and fighter jets to gliders and drones. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at current count) across the European Union and supplanting HPC Read more…

By Oliver Peckham

Arm Targets HPC with New Neoverse Platforms

September 22, 2020

UK-based semiconductor design company Arm today teased details of its Neoverse roadmap, introducing V1 (codenamed Zeus) and N2 (codenamed Perseus), Arm’s seco Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie, Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Nvidia Commits to Buy Arm for $40B

September 14, 2020

Nvidia is acquiring semiconductor design company Arm Ltd. for $40 billion from SoftBank in a blockbuster deal that catapults the GPU chipmaker to a dominant position in the datacenter while helping troubled SoftBank reverse its financial woes. The deal, which has been rumored for... Read more…

By Todd R. Weiss and George Leopold

AMD’s Massive COVID-19 HPC Fund Adds 18 Institutions, 5 Petaflops of Power

September 14, 2020

Almost exactly five months ago, AMD announced its COVID-19 HPC Fund, an ongoing flow of resources and equipment to research institutions studying COVID-19 that began with an initial donation of $15 million. In June, AMD announced major equipment donations to several major institutions. Now, AMD is making its third major COVID-19 HPC Fund... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Do NOT follow this link or you will be banned from the site!
Share This