ORNL-Developed Technology Streamlines Computational Science Projects

September 14, 2018

Sept. 14, 2018 — Since designing and launching a specialized workflow management system in 2010, a research team from the US Department of Energy’s Oak Ridge National Laboratory has continuously updated the technology to help computational scientists develop software, visualize data and solve problems.

Workflow management systems allow users to prepare, produce and analyze scientific processes to help simplify complex simulations. Known as the Eclipse Integrated Computational Environment, or ICE, this particular system incorporates a comprehensive suite of scientific computing tools designed to save time and effort expended during modeling and simulation experiments.

Compiling these resources into a single platform both improves the overall user experience and expedites scientific breakthroughs. Using ICE, software developers, engineers, scientists and programmers can define problems, run simulations locally on personal computers or remotely on other systems—even supercomputers—and then analyze results and archive data. Recently, the team published an article in SoftwareX that both details the history of the system and previews the potential benefits of upcoming versions.

“What I really love about this project is making complicated computational science automatic,” said Jay Jay Billings, a researcher in ORNL’s Computer Science and Mathematics Division who leads the ICE development team. “Building workflow management systems and automation tools is a type of futurism, and it’s challenging and rewarding to operate at the edge of what’s possible.”

Researchers use ICE to study topics in fields including nuclear energy, astrophysics, additive manufacturing, advanced materials, neutron science and quantum computing, answering questions such as how batteries behave and how some 3D-printed parts deform when exposed to heat.

Several factors differentiate ICE from other workflow management systems. For example, because ICE exists on an open-source software framework called the Eclipse Rich Client Platform, anyone can access, download and use it. Users also can create custom combinations of reusable resources and deploy simulation environments tailored to tackle specific research challenges.

“Eclipse ICE is an excellent example of how open-source software can be leveraged to accelerate science and discovery, especially in scientific computing,” said Eclipse Foundation Executive Director Mike Milinkovich. “The Eclipse Foundation, through its community-led Science Working Group, is fostering open-source solutions for advanced research in all areas of science.”

Additionally, ICE circumvents the steep and time-consuming learning curve that usually accompanies any computational science project. Although other systems require expert knowledge of the code and computer in question, ICE enables users to immediately begin facilitating their experiments, thus helping them gather data and achieve results much faster.

“We’ve produced a streamlined interface to computational workflows that differs from complicated systems that you have to be specifically qualified in to use properly,” Billings said.

Throughout this project, Billings has also emphasized the importance of accessibility and usability to ensure that users of all ages and experience levels, including nonscientists, can use the system without prior training.

“The problem with a lot of workflow management systems and with modeling and simulation codes in general is that they are usually unusable to the lay person,” Billings said. “We designed ICE to be usable and accessible so anyone can pick up an existing code and use it to address pressing computational science problems.”

ICE uses the programming language Java to define workflows, whereas other systems use more obscure languages. Thus, students in grade school, high school and college have successfully run codes using ICE.

Finally, instead of relying on grid workflows—collections of orchestrated computing processes—ICE focuses on flexible modeling and simulation workflows that give users interactive control over their projects. Grid workflows are defined by strict parameters and executed without human intervention, but ICE allows users to input additional information during simulations to produce more complicated scenarios.

“In ICE you can have humans in the loop, meaning the program can stop, ask questions and receive instructions before resuming activity,” Billings said. “This feature allows system users to complete more complex tasks like looping and conditional branching.”

Next, the development team intends to combine the most practical aspects of ICE and other systems through workflow interoperability, a concept referring to the ability of two different systems to seamlessly communicate. Combining the best features of grid workflows with modeling and simulation workflows would allow scientists to address even greater challenges and solve scientific mysteries more efficiently.

“If I’m using ICE and someone else is using a different system, we want to be able to address problems together with our combined resources,” Billings said. “With workflow interoperability, our systems would have a standard method of ‘talking’ to one another.”

To further improve ICE’s accessibility and usability, the team is also developing a cloud-based version to provide even more interactive computing services for simplifying scientific workflows.

“That’s what research is—we keep figuring out the next step to understand the system better,” Billings said.

Billings’s coauthors are Andrew R. Bennett, Jordan Deyton, Kasper Gammeltoft, Dasha Gorin, Alexander J. McCaskey, Taylor Patterson, Robert Smith, Gregory R. Watson and Anna Wojtowicz, all current or former ORNL researchers; Jonah Graham of Kichwa Coders Ltd.; Hari Krishnan of Lawrence Berkeley National Laboratory; and Menghan Li of Purdue University.

This project has received support from the DOE Office of Nuclear Energy, the DOE Office of Energy Efficiency and Renewable Energy and the ORNL Undergraduate Research Participation Program, which is sponsored by ORNL and jointly administered by ORNL and the Oak Ridge Institute for Science and Education. The work was also supported in part by the Laboratory Directed Research and Development Program at ORNL. The new cloud-based tool is under development by RNET Technologies, Inc., with support from a Small Business Innovation Research award from DOE.

ORNL is managed by UT-Battelle for the Department of Energy’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit https://science.energy.gov


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia’s Jensen Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that d Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competition. This is the twelfth time that teams of university undergr Read more…

By Dan Olds

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Bailey Hutchison Convention Center and much of the surrounding Read more…

By Tiffany Trader

Nvidia’s Jensen Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

At SC18: GM, Boeing, Deere, BP Talk Enterprise HPC Strategies

November 9, 2018

SC18 in Dallas (Nov.11-16) will feature an impressive series of sessions focused on the enterprise HPC deployments at some of the largest industrial companies: Read more…

By Doug Black

SC 30th Anniversary Perennials 1988-2018

November 8, 2018

Many conferences try, fewer succeed. Thirty years ago, no one knew if the first SC would also be the last. Thirty years later, we know it’s the biggest annual Read more…

By Doug Black & Tiffany Trader

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This