ORNL Develops Advanced Software Framework That Expedites Quantum-Classical Programming

April 24, 2020

April 24, 2020 — In the early 2000s, high-performance computing experts repurposed GPUs — common video game console components used to speed up image rendering and other time-consuming tasks — as co-processors that help CPUs in supercomputers accelerate system operations.

Two decades later, quantum processing units, or QPUs, promise to enhance existing CPU-GPU computer architectures. Future CPU-GPU-QPU supercomputers could tackle complex workloads that would be unmanageable with current systems.

XACC enables the programming of quantum code alongside standard classical code and integrates quantum computers from a number of vendors. This animation illustrates how QPUs complete calculations and return results to the host CPU, a process that could drastically accelerate future scientific simulations. Image courtesy of Michelle Lehman/Oak Ridge National Laboratory, U.S. Dept. of Energy.

To help researchers harness the potential power of QPUs, a team from the Department of Energy’s Oak Ridge National Laboratory developed an advanced software framework called XACC. XACC offloads portions of quantum-classical computing workloads from the host CPU to an attached quantum accelerator, which calculates results and sends them back to the original system. Depending on the complexity of a given problem, this process might occur several times throughout a simulation.

“We built upon the accelerated node model of computing and adapted it to optimize quantum-classical interactions,” said Alex McCaskey, a computer scientist at ORNL who has been developing and refining the framework since 2016.

Classical computers use “bits” valued at 0 or 1, whereas quantum computers use quantum bits, or “qubits,” that can be encoded with 0, 1 or any combination of those values simultaneously. This ability shows immense promise for better data storage and analysis, indicating that quantum processors could eventually overtake classical processors in terms of power, speed and other key metrics.

Because quantum techniques could accelerate scientific computing, researchers are increasingly conducting research on novel quantum hardware platforms. To support that research, scientists require secure, system-level and user-friendly quantum-classical software frameworks. The team designed XACC to fill this gap and published its features and applications in a Quantum Science and Technology special issue focused on quantum software.

“At its core, XACC is a way for users to program quantum-classical systems at a level familiar to those in the HPC community,” McCaskey said. “As hardware continues to improve, we are envisioning new ways to reduce system noise, speed up simulations and integrate new quantum software with existing classical tools and techniques.”

XACC’s unique “plug and play” capability makes the ORNL-developed resource compatible with any available quantum computer. Currently, XACC works with quantum computing platforms developed by IBM, Rigetti, D-Wave and IonQ, and the framework will support additional systems that come online in the near future. The ORNL researchers were the first to build and demonstrate this type of hardware-agnostic software framework for today’s quantum computers.

The framework provides users with additional flexibility by supporting C++ and Python, and the team plans to extend this list to include Julia and other popular computer programming languages. These features allow XACC to integrate CPU-QPU processes into small-scale computing applications and large-scale HPC workflows.

Many scientific problems scale exponentially, which means adding a single particle to an existing simulation would double the amount of space required to calculate accurate results. Classical computers can only simulate systems of a certain size before straining memory limits, but future quantum systems might not have the same limitation and could thus enable new discoveries in fields such as quantum chemistry, nuclear physics, high energy physics and machine learning.

“Encoding scientific problems onto quantum computers would allow us to take advantage of that exponential scaling space to hopefully solve larger problems in a way that is faster and more energy efficient than with purely classical methods,” McCaskey said.

In previous tests, the team proved that XACC can benchmark quantum chemistry applications by evaluating various molecules. And in 2018, ORNL scientists used XACC to complete the first successful simulation of an atomic nucleus using a quantum computer. Recently, the team completed a series of additional XACC demonstrations using resources provided by ORNL’s Compute and Data Environment for Science, which facilitates research across the lab.

Anyone can access XACC through the Eclipse Foundation, a major supplier of open-source software, and the framework marks the foundation’s first quantum computing project. The researchers are currently preparing to run large-scale quantum program simulations with XACC on ORNL’s Summit, the fastest supercomputer in the world, which has a CPU-GPU hybrid architecture.

Going forward, the XACC team will focus on new programming mechanisms that allow users to control the state and movement of qubits by manipulating ultrashort quantum pulses. Obtaining direct pulse-level control could improve efficiency and optimize quantum-accelerated applications.

“The end goal is for XACC to serve as a foundational framework from which we can build a comprehensive software infrastructure for scientific quantum-classical computing,” McCaskey said.

Along with McCaskey, the XACC team includes Dmitry Lyakh, Euguene Dumitrescu, Sarah Powers, Travis Humble, Thien Nguyen, Tyler Kharazi, Zach Parks, Daniel Claudino, Anthony Santana, Jay Jay Billings, Greg Watson, Robert Smith, Vicente Leyton Ortega, Cameron Reid, Prasanna Date, Pavel Lougovski and Raphael Pooser.

This work was supported by ORNL’s Laboratory Directed Research and Development program and DOE’s Office of Science.

About Oak Ridge National Laboratory 

UT-Battelle LLC manages Oak Ridge National Laboratory for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.


Source: Elizabeth Rosenthal, Oak Ridge National Laboratory 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire