ORNL Leverages Frontier for Major Updates to SuperLU and STRUMPACK

July 10, 2024

July 10, 2024 — In 2016, the Department of Energy’s Exascale Computing Project (ECP) set out to develop advanced software for the arrival of exascale-class supercomputers capable of a quintillion (1018) or more calculations per second. That leap meant rethinking, reinventing, and optimizing dozens of scientific applications and software tools to leverage exascale’s thousandfold increase in computing power.

The SuperLU and STRUMPACK solvers have been used by simulation codes working on projects such as the ITER tokamak, which will be the largest fusion device of its kind when built.

That time has arrived as the first DOE exascale computer — the Oak Ridge Leadership Computing Facility’s Frontier — opened to users around the world. “Exascale’s New Frontier” explores the applications and software technology for driving scientific discoveries in the exascale era.

Why Exascale Needs SuperLU and STRUMPACK

To gain new insights into how our universe works, scientists use supercomputers to run simulations that model different natural phenomena — from core-collapse supernovas to the molecular dynamics occurring within a drop of water. Many of these codes must solve sparse linear systems of equations, or ones that lead to matrices with mostly zero-value elements, to produce their simulations. One of the most efficient approaches to solving such calculations in large-scale multiphysics and multiscale modeling codes is the use of factorization-based algorithms.

SuperLU (named after lower-upper factorization) and STRUMPACK (STRUctured Matrix PACKage) are two such open-source, factorization-based sparse solvers that have been widely used for simulation in both industry and academia — SuperLU since 1999 and STRUMPACK since 2015. However, with the advent of exascale-class supercomputers that enable much larger and higher-resolution simulations, these two CPU-centric packages required major updates to run well on the new GPU-accelerated architectures.

“Before ECP, both packages had very little support for GPUs. We could get some benefit from running on a single GPU, but without updating the code, even 10 GPUs wouldn’t make it run much faster. We had to redesign a lot of algorithms internally to be able to use GPUs effectively,” said SuperLU/STRUMPACK project leader Sherry Li, a senior scientist and group lead at Lawrence Berkeley National Laboratory.

“Also, from the application side, most of the exascale applications must use GPUs to achieve their speedups. So, if we didn’t optimize these solvers for GPUs, the whole software chain would have become a bottleneck,” Li said.

Technical Challenges

Exascale supercomputers such as Frontier contain thousands of compute nodes, which hold the system’s CPUs and GPUs. Matrices in many simulation codes must be distributed across all these nodes to fully leverage the machine’s massive parallelism. This distributed computing requires the solver’s algorithms and their work to be communicated and coordinated among these nodes and their GPUs and CPUs. Although integral to distributed parallel computing, this communication becomes an encumbrance at extreme scales.

“It’s inevitable to do communication during the algorithm’s execution to transfer the pieces of data among different nodes. And that turns out to be very costly, especially for a sparse matrix compared to a dense matrix. In the sparse case, you have relatively less computational work, but more interdependency and communication,” Li said.

Scaling up the SuperLU and STRUMPACK algorithms to work effectively across thousands of nodes required the team to develop new factorization methods that required much less memory and data movement.

“That was one of the big challenges for this project — we had to invent some of the algorithms to avoid communication or to reduce communication. This is one of the major algorithm advances we contributed, and then we implemented that in the software so people can use it,” Li said.

ECP and Frontier Successes

The updated SuperLU and STRUMPACK solvers have been successfully implemented in several important simulation codes:

  • M3D-C1 is used for calculating the equilibrium, stability and dynamics of fusion plasmas.
  • Omega3P is used for cavity design optimization for projects such as linear particle accelerators.
  • MFEM is used for scalable finite element discretization research and application development.

These libraries have also been used in higher-level mathematical frameworks, which build on lower-level linear algebra kernels.

What’s Next?

The SuperLU/STRUMPACK project will continue developing its codes as newer computer architectures arise. Li also plans to optimize the packages for applications in artificial intelligence and machine learning, which can work well using lower-precision arithmetic (i.e., half-precision, 16-bit arithmetic instead of single-precision, 32-bit arithmetic) or a combination of higher and lower precisions (i.e., mixed-precision arithmetic).

“Nowadays, a lot of the hardware equipped with GPUs provides precision lower than single precision. And some of our algorithms may not work very well for lower-precision arithmetic,” Li said. “There’s still a lot of work that must be done to implement those. But it’s going to be very fruitful because we imagine that leveraging this lower-precision hardware can have a significant speedup for the training of AI/ML models, which is usually the bottleneck right now.”

Support for this research came from the ECP, a collaborative effort of the DOE Office of Science and the National Nuclear Security Administration, and from the DOE Office of Science’s Advanced Scientific Computing Research program. The OLCF is a DOE Office of Science user facility.

UT-Battelle LLC manages ORNL for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. The Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit https://energy.gov/science.


Source: Coury Turczyn, ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was recently posted by CERN’s department of experimental physi Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to communities across the globe. As climate change is warming ocea Read more…

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical claims. A paper published on July 10 by researchers in the U. Read more…

Belt-Tightening in Store for Most Federal FY25 Science Budets

July 15, 2024

If it’s summer, it’s federal budgeting time, not to mention an election year as well. There’s an excellent summary of the curent state of FY25 efforts reported in AIP’s policy FYI: Science Policy News. Belt-tight Read more…

Peter Shor Wins IEEE 2025 Shannon Award

July 15, 2024

Peter Shor, the MIT mathematician whose ‘Shor’s algorithm’ sent shivers of fear through the encryption community and helped galvanize ongoing efforts to build quantum computers, has been named the 2025 winner of th Read more…

Weekly Wire Roundup: July 8-July 12, 2024

July 12, 2024

HPC news can get pretty sleepy in June and July, but this week saw a bump in activity midweek as Americans realized they still had work to do after the previous holiday weekend. The world outside the United States also s Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to com Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Point and Click HPC: High-Performance Desktops

July 3, 2024

Recently, an interesting paper appeared on Arvix called Use Cases for High-Performance Research Desktops. To be clear, the term desktop in this context does not Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Leading Solution Providers

Contributors

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire