ORNL Part of Two SciDAC Computational Nuclear Physics Projects

October 9, 2017

Oct. 9, 2017 — The Big Bang began the formation and organization of the matter that makes up ourselves and our world. Nearly 14 billion years later, nuclear physicists at the Department of Energy’s Oak Ridge National Laboratory (ORNL) and their partners are using America’s most powerful supercomputers to characterize the behavior of objects, from subatomic neutrons to neutron stars, that differ dramatically in size yet are closely connected by physics.

Through the DOE Office of Science’s Scientific Discovery through Advanced Computing (SciDAC) program, which concurrently advances science and supercomputing to accelerate discovery, ORNL is participating in two five-year computational nuclear physics projects.

Collaborators on the first project, the Nuclear Computational Low Energy Initiative (NUCLEI), will calculate properties and reactions of diverse atomic nuclei that are important in earthly experiments and astrophysical environments. Approximately 30 researchers at 12 national labs and universities are slated to share funding of $10 million. Joseph Carlson of Los Alamos National Laboratory (LANL) heads NUCLEI, with Stefan Wild of Argonne National Laboratory as co-director for applied math and computer science and Thomas Papenbrock of the University of Tennessee, Knoxville (UTK) and ORNL as the co-director for physics.

The second project, Towards Exascale Astrophysics of Mergers and Supernovae (TEAMS), partners 32 researchers from 12 national labs and universities. With planned support of $7.25 million, workers will simulate supernovae explosions and neutron-star mergers that create atomic elements heavier than iron and predict signatures of these cataclysms, such as gravitational waves. Raph Hix of ORNL heads TEAMS, with Bronson Messer of ORNL as the computational lead and Chris Fryer of LANL as the science lead.

“There is a nice synergy—NUCLEI is doing pure nuclear physics and TEAMS is, in a sense, doing applied nuclear physics,” said Hix, a nuclear astrophysicist. “We need their nuclear physics to do our astrophysics.”

NUCLEI partners will calculate the structure, reactions, interactions and decays of stable and radioactive nuclei (elements that decay to more stable states) for comparison with results of experiments at DOE facilities such as the Facility for Rare Isotope Beams (FRIB), under construction at Michigan State University. Because astrophysicists need high-quality input about how nuclei really behave, information from NUCLEI and from experiments will be used in TEAMS simulations that explore how nuclei are created under the extreme conditions of dying stars.

For both SciDAC projects, science and computing experts will start from state-of-the-art models, numerical techniques and leadership-class high-performance computers, such as Titan, ORNL’s current workhorse supercomputer, or Summit, coming in 2018.

Calculating key nuclei

How does the strong force bind protons and neutrons into nuclei? How do light atomic nuclei capture neutrons to create heavier elements in stars? What is the nature of the neutrino, which plays crucial roles in radioactive decay and supernovae explosions?

These are some questions NUCLEI researchers will explore using advanced applied mathematics, computer science and physics to describe atomic nuclei. The calculations are computationally costly. “With 100 or more particles, exact solutions became exponentially costly,” Papenbrock said. “New methods enable efficient performance on the fastest supercomputers.”

ORNL’s critical contribution to NUCLEI’s scientific community is the coupled-cluster method, an efficient, systematic expansion of the nuclear wave function with a modest computational cost. Its solution provides detailed insights into the structure and decay of atomic nuclei and nuclear interactions. ORNL’s lead for the NUCLEI collaboration, Gaute Hagen, also leads the development of a flagship code NUCCOR (NUclear Coupled Cluster Oak Ridge). NUCCOR provides a compromise between high accuracy and affordable computer cost.

At ORNL, Hagen, Gustav R. Jansen and George Fann will compute properties of nuclei and their decays. At UTK, a postdoctoral fellow will work with Papenbrock on the project. NUCLEI’s partners at other institutions will bring their own codes, computational methods, and expertise to the project. “Atomic nuclei exhibit very different properties as one goes from the lightest nucleus with a single nucleon—a proton—to the heaviest, consisting of about 240 nucleons [protons or neutrons],” Papenbrock explained. “In this collaboration, we have complementary methods that are good for different nuclei.”

Hagen said, “At Oak Ridge we developed first principles methods that can describe medium mass and heavy nuclei starting from the underlying interactions between nucleons. This is remarkable progress in the field. A decade ago we were computing the structure of oxygen-16, the oxygen we breathe, which [has] 16 nucleons. Today we just submitted a paper on tin-100, which has 100 nucleons.”

NUCLEI researchers will calculate properties of key isotopes, such as calcium-60, which has 20 protons and 40 neutrons, and is therefore more exotic than the common stable isotope in our bones and teeth, calcium-40 (20 protons, 20 neutrons). “Calcium-60 has not been measured yet,” Hagen said. “Nothing’s known. To go to that region—and beyond—would be a major challenge for theory. But eventually we’ll get there with the tools that we’re developing and the computing power that will be coming available to us in this SciDAC period.”

The biggest nucleus the scientists propose to compute from scratch is lead-208. Knowledge gained about what keeps its nucleons together might impact the understanding of superheavy elements beyond lead-208. Moreover, the calculations will complement both present and pending experiments.

The stars in ourselves

“Astrophysics is a quintessentially multi-physics application,” said Hix, who leads the other SciDAC project in which ORNL participates, known as TEAMS. “There are so many facets of physics involved; nobody can be expert in all of it. So we must build teams.”

The members of the TEAMS project will improve models of the deaths of massive stars, called core-collapse supernovae, which disperse chemical elements throughout the galaxies, as well as models of the final hours of the stars’ lives that set the initial conditions for core-collapse supernovae. They will also improve models of the mergers of neutron stars, which create black holes while also dispersing newly formed elements.

Improving the TEAMS simulations will require better microscopic nuclear physics, improving our understanding of the states of nuclear matter and its interactions with neutrinos. TEAMS scientists will also study the consequences of explosions detectable by telescopes and the chemical history of our galaxy, providing observations that can be compared with simulations to validate models.

In core-collapse supernovae, massive stars (10 times the mass of our Sun) build up an iron core surrounded by layers of lighter elements—e.g., silicon, oxygen, carbon, helium, hydrogen. Eventually the iron core collapses to form a neutron star, launching a shock wave.

Since the 1960s, scientists have tried to simulate how this shock wave produces a supernova, starting with one-dimensional models that assumed the star was spherically symmetric. Simulations based on those models rarely resulted in explosions. More recently, with better understanding of the physics and faster computers, researchers started running two-dimensional, and later three-dimensional, core-collapse supernova models with improved physics.

“The behavior in two or three dimensions is completely different and you get the development of big convective regions,” Hix said. “It is neutrino energy delivered to the shock wave by convective flows that ultimately powers up the explosion. The result is an asymmetric explosion that shoots out big plumes.”

The power source that drives this explosion is the newly made neutron star, its Sun-sized mass compressed into a mere 30 kilometers, releasing tremendous energy that is carried away rapidly by neutrinos. Capturing just a small fraction of the escaping neutrinos reenergizes the shockwave, leading to the supernova.

The material that gets shot out into the galaxy by the supernova is available to make the next generation of stars. Elements—the oxygen in your breath, the iron in your blood—are tangible tracers of the chemical evolution of our galaxy all the way back to the Big Bang. “The story your atoms could tell!” Hix exclaimed. “Billions of years ago and thousands of light years away, parts of you have been through supernovae, neutron star mergers and other exotic events, and we can prove it because you carry all of the elements and isotopes that were made there. There’s a tendency when people look at the sky to say, ‘Oh, that’s the universe.’ But the universe is here too,” he said, tapping his chest.

The DOE Office of Science supports TEAMS and NUCLEI, as well as a third SciDAC project, Computing the Properties of Matter with Leadership Computing Resources, which will explore the properties of strongly interacting particles composed of quarks and gluons. As results from these projects become available, they will be coupled with results from the other projects and compared to experiment to provide a more complete understanding of nuclei and their reactions.

UT-Battelle manages ORNL for DOE’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.


Source: Oak Ridge National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Top Ten Ways AI Affects HPC in 2019

March 26, 2019

AI workloads are becoming ubiquitous, including running on the world’s fastest computers — thereby changing what we call HPC forever. As every organization plans for the future, AI workloads are on our minds — how Read more…

By James Reinders

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

Top Ten Ways AI Affects HPC in 2019

March 26, 2019

AI workloads are becoming ubiquitous, including running on the world’s fastest computers — thereby changing what we call HPC forever. As every organization Read more…

By James Reinders

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This