ORNL Researchers Bridge the Gap Between R, HPC Communities

April 20, 2017

OAK RIDGE, Tenn., April 20, 2017 — The ability to realistically simulate a range of scientific phenomena, such as supernova explosions and the behavior of materials at the nanoscale, has proven a boon to researchers across the scientific spectrum.

Many now consider simulation the third pillar of scientific inquiry, alongside the centuries-old pillars of theory and experiment.

Yet for some areas of science, parallel computing’s promise remains untapped—specifically, fields such as statistics, genomics, finance, economics, sociology, and the environmental sciences, all of which rely strongly on the R programming language. That’s a shame, says Oak Ridge National Laboratory’s George Ostrouchov, who is heading up the Programming with Big Data in R (pbdR) project to bring these untapped domains into the high-performance computing fold.

These “untapped domains” represent an enormous potential user base for world-class computers such as those owned by the Department of Energy and an enormous opportunity for the power of HPC to accelerate research breakthroughs across the statistical sciences.

Ostrouchov and his colleagues have started the ball rolling with a paper in the journal Big Data Research that serves as a tutorial on how to achieve scalable performance with R on leadership computing resources such as ORNL’s Titan, currently the fastest computer in the country for open science. “70-80 percent of statisticians use R,” said Ostrouchov, “and we want to make HPC tools usable for the statistics community.”

The goal of pbdR is to make the tools familiar to R-based communities compatible with HPC, as opposed to the much more taxing option of having these communities change the way in which they do research. Whereas traditional simulation science produces data, R-based research areas seek to use and understand data.

“These communities don’t know HPC, so by providing these tools at least part of their workflow is in a familiar environment,” said Ostrouchov. “We want to make it easier for these communities to accelerate their science.”

Ostrouchov is a statistician by training, but his work at ORNL has brought him into contact with the most powerful machines and some of the brightest minds in the HPC community. His previous experience with R, and his more recent experience with HPC, gave him some ideas on what might work and what wouldn’t, and which pieces were most likely to fit together.

After exploring the potential of R on world-class resources such as Titan for the Department of Energy’s Office of Science and the now retired Kraken for the National Science Foundation, Ostrouchov and his colleagues Wei-Chen Chen, Drew Schmidt and Pragneshkumar Patel have made great strides in merging the two seemingly disparate platforms, and by extension two very different cultures.

The evolution of R

R’s real strength lies in data exploration and the creation of graphics to explain complex datasets, supported by an unmatched variety of transparent and understandable machine learning tools. “It’s probably the gold standard for graphics in data exploration,” said Ostrouchov. Much like other popular languages such as Python and MATLAB it’s scripted – as opposed to compiled as in the case of C and Fortran.

This presents a unique set of challenges for running effectively on HPC platforms, particularly given that all scripted languages load libraries dynamically during runtime, a process which can bog down file systems when thousands of parallel library requests are made.

Fortunately, Ostrouchov’s BDR co-author Mike Matheson has developed a set of partial solutions that enable libraries to load almost seamlessly up to 10,000 cores thus far on Titan. These solutions are still being optimized, meaning that the 10,000-core metric will almost certainly increase in the future.

Thus far the overhead of using a scripted language to drive the libraries has proven remarkably small, approaching the performance of the underlying linear algebra code known as ScaLAPACK used by other codes to perform matrix calculations. “In theory,” said Ostrouchov, “there’s no reason that R couldn’t match the performance of the leading science codes on Titan.”

Equally important is the fact that the pbdR team has made it possible to run R on HPC systems without changes to the serial code in matrix computations, meaning much less work for programmers looking to make the jump; the same code will do the same thing on a single-processor matrix or a multi-processor matrix such as those employed across Titan, or any other world-class HPC resource for that matter.

Portability was always a top priority, said Ostrouchov, adding that the same code will work on nearly any HPC resource, no matter the architecture; one need only swap out the libraries.

The pbdR team’s achievements bode well for the future of R and HPC, but bringing together these two very different communities will take time, and a few pioneers such as ORNL computational biologist Dan Jacobson who, along with a team including graduate research assistant and PhD student at the University of Tennessee’s Bredesen Center Piet Jones, is using R on Titan to advance the state of the art in genomics and bioenergy.

The team has used the pbdR team’s streamlined R bindings for MPI, a messaging framework that enables the many compute nodes in a parallel machine such as Titan to communicate, to distribute gene expression data to multiple nodes for rapid analyses. This technique will enable a better understanding of the biological functions assigned to individual genes and help discover what metabolites are driving certain observations.

“We need to know what is influencing a biological function, whether this be a gene, regulatory element, metabolite or something else,” said Jones, adding that these analyses help researchers better understand pleiotropy, or the idea that genes have multiple functions, and epistasis, in which the interactions of multiple genes results in a certain characteristic.

Their various projects allow for multiple comparisons using different techniques, and by extension allow them to tackle ever bigger problems in genomics.

Jacobson is also now collaborating with other institutions to use R to study plant microbial interfaces for bioenergy applications, work that he can later apply to clinical datasets for a scientific win-win across very different domains.

It will no doubt be the first of many as the R programming community becomes more comfortable with this whole new world of massive computing capability.

Titan is part of the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility located at ORNL.

About Oak Ridge National Laboratory

Oak Ridge National Laboratory is supported by the DOE’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Source: Scott Jones, ORNL Communications

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Help Wanted: QED-C Survey Spotlights Skills Sought by Quantum Industry

September 28, 2021

Developing an adequate workforce for the young but fast-growing quantum information sciences industry is seen as a critical element for success. Just what that means in terms of skillsets and positions is becoming cleare Read more…

Pittsburgh Supercomputer Powers Machine Learning Analysis of Rare East Asian Stamps

September 27, 2021

Setting aside the relatively recent rise of electronic signatures, personalized stamps have been a popular form of identification for formal documents in East Asia. These identifiers – easily forged, but culturally ubi Read more…

Purdue Researchers Peer into the ‘Fog of the Machine Learning Accelerator War’

September 27, 2021

Making sense of ML performance and benchmark data is an ongoing challenge. In light of last week’s release of the most recent MLPerf (v1.1) inference results, now is perhaps a good time to review how valuable (or not) Read more…

Quantum Monte Carlo at Exascale Could Be Key to Finding New Semiconductor Materials

September 27, 2021

Researchers are urgently trying to identify possible materials to replace silicon-based semiconductors. The processing power in modern computers continues to increase even as the size of the silicon on which components a Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institute of Science and Engineering (NAISE), at the most recent HPC Read more…

AWS Solution Channel

Introducing AWS ParallelCluster 3

Running HPC workloads, like computational fluid dynamics (CFD), molecular dynamics, or weather forecasting typically involves a lot of moving parts. You need a hundreds or thousands of compute cores, a job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both), loads of libraries, a fast network, and a head node to make sense of all this. Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Purdue Researchers Peer into the ‘Fog of the Machine Learning Accelerator War’

September 27, 2021

Making sense of ML performance and benchmark data is an ongoing challenge. In light of last week’s release of the most recent MLPerf (v1.1) inference results, Read more…

Quantum Monte Carlo at Exascale Could Be Key to Finding New Semiconductor Materials

September 27, 2021

Researchers are urgently trying to identify possible materials to replace silicon-based semiconductors. The processing power in modern computers continues to in Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institut Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pu Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire