ORNL Researchers Bridge the Gap Between R, HPC Communities

April 20, 2017

OAK RIDGE, Tenn., April 20, 2017 — The ability to realistically simulate a range of scientific phenomena, such as supernova explosions and the behavior of materials at the nanoscale, has proven a boon to researchers across the scientific spectrum.

Many now consider simulation the third pillar of scientific inquiry, alongside the centuries-old pillars of theory and experiment.

Yet for some areas of science, parallel computing’s promise remains untapped—specifically, fields such as statistics, genomics, finance, economics, sociology, and the environmental sciences, all of which rely strongly on the R programming language. That’s a shame, says Oak Ridge National Laboratory’s George Ostrouchov, who is heading up the Programming with Big Data in R (pbdR) project to bring these untapped domains into the high-performance computing fold.

These “untapped domains” represent an enormous potential user base for world-class computers such as those owned by the Department of Energy and an enormous opportunity for the power of HPC to accelerate research breakthroughs across the statistical sciences.

Ostrouchov and his colleagues have started the ball rolling with a paper in the journal Big Data Research that serves as a tutorial on how to achieve scalable performance with R on leadership computing resources such as ORNL’s Titan, currently the fastest computer in the country for open science. “70-80 percent of statisticians use R,” said Ostrouchov, “and we want to make HPC tools usable for the statistics community.”

The goal of pbdR is to make the tools familiar to R-based communities compatible with HPC, as opposed to the much more taxing option of having these communities change the way in which they do research. Whereas traditional simulation science produces data, R-based research areas seek to use and understand data.

“These communities don’t know HPC, so by providing these tools at least part of their workflow is in a familiar environment,” said Ostrouchov. “We want to make it easier for these communities to accelerate their science.”

Ostrouchov is a statistician by training, but his work at ORNL has brought him into contact with the most powerful machines and some of the brightest minds in the HPC community. His previous experience with R, and his more recent experience with HPC, gave him some ideas on what might work and what wouldn’t, and which pieces were most likely to fit together.

After exploring the potential of R on world-class resources such as Titan for the Department of Energy’s Office of Science and the now retired Kraken for the National Science Foundation, Ostrouchov and his colleagues Wei-Chen Chen, Drew Schmidt and Pragneshkumar Patel have made great strides in merging the two seemingly disparate platforms, and by extension two very different cultures.

The evolution of R

R’s real strength lies in data exploration and the creation of graphics to explain complex datasets, supported by an unmatched variety of transparent and understandable machine learning tools. “It’s probably the gold standard for graphics in data exploration,” said Ostrouchov. Much like other popular languages such as Python and MATLAB it’s scripted – as opposed to compiled as in the case of C and Fortran.

This presents a unique set of challenges for running effectively on HPC platforms, particularly given that all scripted languages load libraries dynamically during runtime, a process which can bog down file systems when thousands of parallel library requests are made.

Fortunately, Ostrouchov’s BDR co-author Mike Matheson has developed a set of partial solutions that enable libraries to load almost seamlessly up to 10,000 cores thus far on Titan. These solutions are still being optimized, meaning that the 10,000-core metric will almost certainly increase in the future.

Thus far the overhead of using a scripted language to drive the libraries has proven remarkably small, approaching the performance of the underlying linear algebra code known as ScaLAPACK used by other codes to perform matrix calculations. “In theory,” said Ostrouchov, “there’s no reason that R couldn’t match the performance of the leading science codes on Titan.”

Equally important is the fact that the pbdR team has made it possible to run R on HPC systems without changes to the serial code in matrix computations, meaning much less work for programmers looking to make the jump; the same code will do the same thing on a single-processor matrix or a multi-processor matrix such as those employed across Titan, or any other world-class HPC resource for that matter.

Portability was always a top priority, said Ostrouchov, adding that the same code will work on nearly any HPC resource, no matter the architecture; one need only swap out the libraries.

The pbdR team’s achievements bode well for the future of R and HPC, but bringing together these two very different communities will take time, and a few pioneers such as ORNL computational biologist Dan Jacobson who, along with a team including graduate research assistant and PhD student at the University of Tennessee’s Bredesen Center Piet Jones, is using R on Titan to advance the state of the art in genomics and bioenergy.

The team has used the pbdR team’s streamlined R bindings for MPI, a messaging framework that enables the many compute nodes in a parallel machine such as Titan to communicate, to distribute gene expression data to multiple nodes for rapid analyses. This technique will enable a better understanding of the biological functions assigned to individual genes and help discover what metabolites are driving certain observations.

“We need to know what is influencing a biological function, whether this be a gene, regulatory element, metabolite or something else,” said Jones, adding that these analyses help researchers better understand pleiotropy, or the idea that genes have multiple functions, and epistasis, in which the interactions of multiple genes results in a certain characteristic.

Their various projects allow for multiple comparisons using different techniques, and by extension allow them to tackle ever bigger problems in genomics.

Jacobson is also now collaborating with other institutions to use R to study plant microbial interfaces for bioenergy applications, work that he can later apply to clinical datasets for a scientific win-win across very different domains.

It will no doubt be the first of many as the R programming community becomes more comfortable with this whole new world of massive computing capability.

Titan is part of the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility located at ORNL.

About Oak Ridge National Laboratory

Oak Ridge National Laboratory is supported by the DOE’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Source: Scott Jones, ORNL Communications

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire