ORNL Researchers Bridge the Gap Between R, HPC Communities

April 20, 2017

OAK RIDGE, Tenn., April 20, 2017 — The ability to realistically simulate a range of scientific phenomena, such as supernova explosions and the behavior of materials at the nanoscale, has proven a boon to researchers across the scientific spectrum.

Many now consider simulation the third pillar of scientific inquiry, alongside the centuries-old pillars of theory and experiment.

Yet for some areas of science, parallel computing’s promise remains untapped—specifically, fields such as statistics, genomics, finance, economics, sociology, and the environmental sciences, all of which rely strongly on the R programming language. That’s a shame, says Oak Ridge National Laboratory’s George Ostrouchov, who is heading up the Programming with Big Data in R (pbdR) project to bring these untapped domains into the high-performance computing fold.

These “untapped domains” represent an enormous potential user base for world-class computers such as those owned by the Department of Energy and an enormous opportunity for the power of HPC to accelerate research breakthroughs across the statistical sciences.

Ostrouchov and his colleagues have started the ball rolling with a paper in the journal Big Data Research that serves as a tutorial on how to achieve scalable performance with R on leadership computing resources such as ORNL’s Titan, currently the fastest computer in the country for open science. “70-80 percent of statisticians use R,” said Ostrouchov, “and we want to make HPC tools usable for the statistics community.”

The goal of pbdR is to make the tools familiar to R-based communities compatible with HPC, as opposed to the much more taxing option of having these communities change the way in which they do research. Whereas traditional simulation science produces data, R-based research areas seek to use and understand data.

“These communities don’t know HPC, so by providing these tools at least part of their workflow is in a familiar environment,” said Ostrouchov. “We want to make it easier for these communities to accelerate their science.”

Ostrouchov is a statistician by training, but his work at ORNL has brought him into contact with the most powerful machines and some of the brightest minds in the HPC community. His previous experience with R, and his more recent experience with HPC, gave him some ideas on what might work and what wouldn’t, and which pieces were most likely to fit together.

After exploring the potential of R on world-class resources such as Titan for the Department of Energy’s Office of Science and the now retired Kraken for the National Science Foundation, Ostrouchov and his colleagues Wei-Chen Chen, Drew Schmidt and Pragneshkumar Patel have made great strides in merging the two seemingly disparate platforms, and by extension two very different cultures.

The evolution of R

R’s real strength lies in data exploration and the creation of graphics to explain complex datasets, supported by an unmatched variety of transparent and understandable machine learning tools. “It’s probably the gold standard for graphics in data exploration,” said Ostrouchov. Much like other popular languages such as Python and MATLAB it’s scripted – as opposed to compiled as in the case of C and Fortran.

This presents a unique set of challenges for running effectively on HPC platforms, particularly given that all scripted languages load libraries dynamically during runtime, a process which can bog down file systems when thousands of parallel library requests are made.

Fortunately, Ostrouchov’s BDR co-author Mike Matheson has developed a set of partial solutions that enable libraries to load almost seamlessly up to 10,000 cores thus far on Titan. These solutions are still being optimized, meaning that the 10,000-core metric will almost certainly increase in the future.

Thus far the overhead of using a scripted language to drive the libraries has proven remarkably small, approaching the performance of the underlying linear algebra code known as ScaLAPACK used by other codes to perform matrix calculations. “In theory,” said Ostrouchov, “there’s no reason that R couldn’t match the performance of the leading science codes on Titan.”

Equally important is the fact that the pbdR team has made it possible to run R on HPC systems without changes to the serial code in matrix computations, meaning much less work for programmers looking to make the jump; the same code will do the same thing on a single-processor matrix or a multi-processor matrix such as those employed across Titan, or any other world-class HPC resource for that matter.

Portability was always a top priority, said Ostrouchov, adding that the same code will work on nearly any HPC resource, no matter the architecture; one need only swap out the libraries.

The pbdR team’s achievements bode well for the future of R and HPC, but bringing together these two very different communities will take time, and a few pioneers such as ORNL computational biologist Dan Jacobson who, along with a team including graduate research assistant and PhD student at the University of Tennessee’s Bredesen Center Piet Jones, is using R on Titan to advance the state of the art in genomics and bioenergy.

The team has used the pbdR team’s streamlined R bindings for MPI, a messaging framework that enables the many compute nodes in a parallel machine such as Titan to communicate, to distribute gene expression data to multiple nodes for rapid analyses. This technique will enable a better understanding of the biological functions assigned to individual genes and help discover what metabolites are driving certain observations.

“We need to know what is influencing a biological function, whether this be a gene, regulatory element, metabolite or something else,” said Jones, adding that these analyses help researchers better understand pleiotropy, or the idea that genes have multiple functions, and epistasis, in which the interactions of multiple genes results in a certain characteristic.

Their various projects allow for multiple comparisons using different techniques, and by extension allow them to tackle ever bigger problems in genomics.

Jacobson is also now collaborating with other institutions to use R to study plant microbial interfaces for bioenergy applications, work that he can later apply to clinical datasets for a scientific win-win across very different domains.

It will no doubt be the first of many as the R programming community becomes more comfortable with this whole new world of massive computing capability.

Titan is part of the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility located at ORNL.

About Oak Ridge National Laboratory

Oak Ridge National Laboratory is supported by the DOE’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Source: Scott Jones, ORNL Communications

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell EMC will Build OzStar – Swinburne’s New Supercomputer to Study Gravity

August 16, 2017

Dell EMC announced yesterday it is building a new supercomputer – the OzStar – for the Swinburne University of Technology (Australia) in support the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system into space aboard the SpaceX Dragon Spacecraft to explore if Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based system on the STREAM benchmark and on a test case running ANS Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capa Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This