ORNL Researchers Bridge the Gap Between R, HPC Communities

April 20, 2017

OAK RIDGE, Tenn., April 20, 2017 — The ability to realistically simulate a range of scientific phenomena, such as supernova explosions and the behavior of materials at the nanoscale, has proven a boon to researchers across the scientific spectrum.

Many now consider simulation the third pillar of scientific inquiry, alongside the centuries-old pillars of theory and experiment.

Yet for some areas of science, parallel computing’s promise remains untapped—specifically, fields such as statistics, genomics, finance, economics, sociology, and the environmental sciences, all of which rely strongly on the R programming language. That’s a shame, says Oak Ridge National Laboratory’s George Ostrouchov, who is heading up the Programming with Big Data in R (pbdR) project to bring these untapped domains into the high-performance computing fold.

These “untapped domains” represent an enormous potential user base for world-class computers such as those owned by the Department of Energy and an enormous opportunity for the power of HPC to accelerate research breakthroughs across the statistical sciences.

Ostrouchov and his colleagues have started the ball rolling with a paper in the journal Big Data Research that serves as a tutorial on how to achieve scalable performance with R on leadership computing resources such as ORNL’s Titan, currently the fastest computer in the country for open science. “70-80 percent of statisticians use R,” said Ostrouchov, “and we want to make HPC tools usable for the statistics community.”

The goal of pbdR is to make the tools familiar to R-based communities compatible with HPC, as opposed to the much more taxing option of having these communities change the way in which they do research. Whereas traditional simulation science produces data, R-based research areas seek to use and understand data.

“These communities don’t know HPC, so by providing these tools at least part of their workflow is in a familiar environment,” said Ostrouchov. “We want to make it easier for these communities to accelerate their science.”

Ostrouchov is a statistician by training, but his work at ORNL has brought him into contact with the most powerful machines and some of the brightest minds in the HPC community. His previous experience with R, and his more recent experience with HPC, gave him some ideas on what might work and what wouldn’t, and which pieces were most likely to fit together.

After exploring the potential of R on world-class resources such as Titan for the Department of Energy’s Office of Science and the now retired Kraken for the National Science Foundation, Ostrouchov and his colleagues Wei-Chen Chen, Drew Schmidt and Pragneshkumar Patel have made great strides in merging the two seemingly disparate platforms, and by extension two very different cultures.

The evolution of R

R’s real strength lies in data exploration and the creation of graphics to explain complex datasets, supported by an unmatched variety of transparent and understandable machine learning tools. “It’s probably the gold standard for graphics in data exploration,” said Ostrouchov. Much like other popular languages such as Python and MATLAB it’s scripted – as opposed to compiled as in the case of C and Fortran.

This presents a unique set of challenges for running effectively on HPC platforms, particularly given that all scripted languages load libraries dynamically during runtime, a process which can bog down file systems when thousands of parallel library requests are made.

Fortunately, Ostrouchov’s BDR co-author Mike Matheson has developed a set of partial solutions that enable libraries to load almost seamlessly up to 10,000 cores thus far on Titan. These solutions are still being optimized, meaning that the 10,000-core metric will almost certainly increase in the future.

Thus far the overhead of using a scripted language to drive the libraries has proven remarkably small, approaching the performance of the underlying linear algebra code known as ScaLAPACK used by other codes to perform matrix calculations. “In theory,” said Ostrouchov, “there’s no reason that R couldn’t match the performance of the leading science codes on Titan.”

Equally important is the fact that the pbdR team has made it possible to run R on HPC systems without changes to the serial code in matrix computations, meaning much less work for programmers looking to make the jump; the same code will do the same thing on a single-processor matrix or a multi-processor matrix such as those employed across Titan, or any other world-class HPC resource for that matter.

Portability was always a top priority, said Ostrouchov, adding that the same code will work on nearly any HPC resource, no matter the architecture; one need only swap out the libraries.

The pbdR team’s achievements bode well for the future of R and HPC, but bringing together these two very different communities will take time, and a few pioneers such as ORNL computational biologist Dan Jacobson who, along with a team including graduate research assistant and PhD student at the University of Tennessee’s Bredesen Center Piet Jones, is using R on Titan to advance the state of the art in genomics and bioenergy.

The team has used the pbdR team’s streamlined R bindings for MPI, a messaging framework that enables the many compute nodes in a parallel machine such as Titan to communicate, to distribute gene expression data to multiple nodes for rapid analyses. This technique will enable a better understanding of the biological functions assigned to individual genes and help discover what metabolites are driving certain observations.

“We need to know what is influencing a biological function, whether this be a gene, regulatory element, metabolite or something else,” said Jones, adding that these analyses help researchers better understand pleiotropy, or the idea that genes have multiple functions, and epistasis, in which the interactions of multiple genes results in a certain characteristic.

Their various projects allow for multiple comparisons using different techniques, and by extension allow them to tackle ever bigger problems in genomics.

Jacobson is also now collaborating with other institutions to use R to study plant microbial interfaces for bioenergy applications, work that he can later apply to clinical datasets for a scientific win-win across very different domains.

It will no doubt be the first of many as the R programming community becomes more comfortable with this whole new world of massive computing capability.

Titan is part of the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility located at ORNL.

About Oak Ridge National Laboratory

Oak Ridge National Laboratory is supported by the DOE’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Source: Scott Jones, ORNL Communications

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This