ORNL Researchers Use Stampede2 to Refine Drug Discovery Pipeline

July 7, 2021

July 7, 2021 — Since the first known case of COVID-19 in December 2019, the disease has infected over 180 million people and killed nearly four million. A successful group of vaccines that target the coronavirus’s spike protein has started to drive down global infection. Supercomputers are now speeding up the process of finding new potential drug candidates that are safe, effective, and can complement vaccines.

Researchers from Oak Ridge National Laboratory are using the Stampede2 system of the Texas Advanced Computing Center as one of the major compute platforms to help refine the screening of potential drug molecules that can disrupt the spike protein from binding to human cells and causing infection.

The refinement is just one part of a much larger process that casts a wide net at entire databases of millions of compounds that have already passed regulatory approval, such as the ZINC public access database. The whole process is described as a “supercomputer-driven pipeline for in silico drug discovery,” in research published December of 2020 in the ACS Journal of Chemical Information and Modeling.

A computational prescreening at the beginning of the pipeline process is based on a structural model of the target protein’s atoms.

The Summit supercomputer at Oak Ridge National Laboratory is being used for all-atom molecular dynamics simulations of potential drug molecules against COVID-19. Credit: Oak Ridge Leadership Computing Facility, ORNL.

“We first look at available databases of molecules and check the interactions of the molecules with the proteins. That’s where our effort comes into play,” said drug pipeline study co-author Stephan Irle, leader of the Computational Chemistry and Nanomaterial Sciences Group at Oak Ridge National Laboratory (ORNL). “We use these predictive quantum mechanical methods for the reliable prediction of binding affinity of ligands to the protein.”

In a prior study in pre-preprint at Chemrxiv, Jeremy Smith of ORNL used all-atom molecular dynamics to perform 51,575 docking calculations involving the six conformations of the S-protein:ACE2 interface and 8,669 ligands of the ZINC15 database. The 3000 top potential candidates were sifted out based on binding affinity to the active sites of the coronavirus spike protein.

Those top 3000 were then run through the gamut of quantum mechanics-based ranking refinement and binding analysis — a computationally demanding step that included solvent effects.

The top 100 strongest-binding compounds were validated and further refined using FMO-MP2/PCM single point energy calculations by Irle and colleagues. This created a short list of 47 ligands for further testing, saving precious time by focusing on the most effective inhibitors in an experiment-theory feedback.

The Stampede2 supercomputer at the Texas Advanced Computing Center is refining the results identified through a computational drug discovery pipeline for COVID-19 using a quantum chemistry procedure developed by researchers at Oak Ridge National Laboratory. Credit: TACC.

The computations were performed on TACC’s Stampede2 supercomputer, taking advantage of the 48 Intel Skylake CPU cores (2 sockets) within one compute node for a single geometry optimization. The Stampede2 supercomputer ranks #35 fastest globally and #3 in U.S. academia, according to the June 2021 Top500 rankings.
“The Stampede2 performance was very high. Also, the service and the support were always very active. We had a very positive experience,” said Van Quan Vuong, Co-PI of the quantum refinement project, study co-author on the drug discovery pipeline project, and a PhD student supervised by Irle at The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN.

“For one ligand and protein complex, we can get the binding energy (on Stampede2) in only one or two hours,” Irle added. “If we have another computer node, we can get the scoring function of a few hundred compound complexes in a day. That’s a pretty remarkable improvement over traditional DFT calculations.”

Quantum refinement processes are helping researchers at Oak Ridge National Laboratory zero in on key binding sites of the coronavirus spike protein. Ultimately, the refinement fits into a larger computational pipeline that scans through millions of compounds and finds the best ones for further testing. Illustration shows the process of protein structure preparation and fragmentation for quantum chemical docking refinement. In the case of the COVID-19 S-protein the ligand does not form a covalent bond. The colors on the right side indicate different fragments in the FMO formalism. Credit: Stephan Irle, ORNL.

The more recent work with the drug discovery pipeline was led by Jeremy Smith of ORNL. The lion’s share of the computation involved molecular dynamics simulations on the ORNL Summit IBM GPU-based system, the #2 fastest supercomputer in the world according to the June 2021 Top500 rankings. It performed about 2.07 million physical docking calculations on a smaller database and 2.4 billion docking calculations with the Enamine REAL database of compounds.

The quantum mechanical refinement protocol developed by Irle and Vuong using Stampede2 is still in its preliminary stages. The researchers plan to investigate 15 spike protein clusters and refine the binding energies of 150 protein ligand complexes in the pipeline study.

Said Irle: “Reducing the number of drug candidates and reliably narrowing down the most active species, eventually will result in a faster response to suddenly emergent pandemic situations like we had with COVID-19. This is a new approach, in that traditionally the involvement of quantum mechanics in computational drug discovery has been an exotic side field because it was considered too expensive. But with the method we have developed, we are in a position to do full quantum chemical analysis of the whole protein with the ligand in order to get reliable binding energies on the order of hours, rather than days.”

This ORNL research project and others studying COVID-19 are supported by the DOE Office of Science’s National Virtual Biotechnology Laboratory with funding provided by the Coronavirus CARES Act.

Funding and support for the drug discovery pipeline work was provided by the Alabama Supercomputer Authority, the National Institutes of Health, a National Science Foundation Graduate Research Fellowship, the Cancer Research Informatics Shared Resource Facility of the University of Kentucky Markey Cancer Center, and the University of Kentucky’s Center for Computational Sciences (CCS) high-performance computing resources. Computer time on Summit and Stampede2 was granted by the HPC Covid-19 Consortium.

Click here to learn more.


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Argonne’s HPC/AI User Forum Wrap Up

September 11, 2024

As fans of this publication will already know, AI is everywhere. We hear about it in the news, at work, and in our daily lives. It’s such a revolutionary technology that even established events focusing on HPC specific Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be natively integrated into four of the world's most advanced qu Read more…

Computing-Driven Medicine: Sleeping Better with HPC

September 10, 2024

As a senior undergraduate student at Fisk University in Nashville, Tenn., Ifrah Khurram's calculus professor, Dr. Sanjukta Hota, encouraged her to apply for the Sustainable Research Pathways Program (SRP). SRP was create Read more…

LLNL Engineers Harness Machine Learning to Unlock New Possibilities in Lattice Structures

September 9, 2024

Lattice structures, characterized by their complex patterns and hierarchical designs, offer immense potential across various industries, including automotive, aerospace, and biomedical engineering. With their outstand Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, integrated, and secured data. Now scientists working at univer Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently posted the following on X/Twitter: "This weekend, the @xA Read more…

Shutterstock 793611091

Argonne’s HPC/AI User Forum Wrap Up

September 11, 2024

As fans of this publication will already know, AI is everywhere. We hear about it in the news, at work, and in our daily lives. It’s such a revolutionary tech Read more…

Quantum Software Specialist Q-CTRL Inks Deals with IBM, Rigetti, Oxford, and Diraq

September 10, 2024

Q-CTRL, the Australia-based start-up focusing on quantum infrastructure software, today announced that its performance-management software, Fire Opal, will be n Read more…

NSF-Funded Data Fabric Takes Flight

September 5, 2024

The data fabric has emerged as an enterprise data management pattern for companies that struggle to provide large teams of users with access to well-managed, in Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Shutterstock 1897494979

What’s New with Chapel? Nine Questions for the Development Team

September 4, 2024

HPC news headlines often highlight the latest hardware speeds and feeds. While advances on the hardware front are important, improving the ability to write soft Read more…

Critics Slam Government on Compute Speeds in Regulations

September 3, 2024

Critics are accusing the U.S. and state governments of overreaching by including limits on compute speeds in regulations and laws, which they claim will limit i Read more…

Shutterstock 1622080153

AWS Perfects Cloud Service for Supercomputing Customers

August 29, 2024

Amazon's AWS believes it has finally created a cloud service that will break through with HPC and supercomputing customers. The cloud provider a Read more…

HPC Debrief: James Walker CEO of NANO Nuclear Energy on Powering Datacenters

August 27, 2024

Welcome to The HPC Debrief where we interview industry leaders that are shaping the future of HPC. As the growth of AI continues, finding power for data centers Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Leading Solution Providers

Contributors

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Department of Justice Begins Antitrust Probe into Nvidia

August 9, 2024

After months of skyrocketing stock prices and unhinged optimism, Nvidia has run into a few snags – a  design flaw in one of its new chips and an antitrust pr Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

xAI Colossus: The Elon Project

September 5, 2024

Elon Musk's xAI cluster, named Colossus (possibly after the 1970 movie about a massive computer that does not end well), has been brought online. Musk recently Read more…

Spelunking the HPC and AI GPU Software Stacks

June 21, 2024

As AI continues to reach into every domain of life, the question remains as to what kind of software these tools will run on. The choice in software stacks – Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire