ORNL Researchers Use Stampede2 to Refine Drug Discovery Pipeline

July 7, 2021

July 7, 2021 — Since the first known case of COVID-19 in December 2019, the disease has infected over 180 million people and killed nearly four million. A successful group of vaccines that target the coronavirus’s spike protein has started to drive down global infection. Supercomputers are now speeding up the process of finding new potential drug candidates that are safe, effective, and can complement vaccines.

Researchers from Oak Ridge National Laboratory are using the Stampede2 system of the Texas Advanced Computing Center as one of the major compute platforms to help refine the screening of potential drug molecules that can disrupt the spike protein from binding to human cells and causing infection.

The refinement is just one part of a much larger process that casts a wide net at entire databases of millions of compounds that have already passed regulatory approval, such as the ZINC public access database. The whole process is described as a “supercomputer-driven pipeline for in silico drug discovery,” in research published December of 2020 in the ACS Journal of Chemical Information and Modeling.

A computational prescreening at the beginning of the pipeline process is based on a structural model of the target protein’s atoms.

The Summit supercomputer at Oak Ridge National Laboratory is being used for all-atom molecular dynamics simulations of potential drug molecules against COVID-19. Credit: Oak Ridge Leadership Computing Facility, ORNL.

“We first look at available databases of molecules and check the interactions of the molecules with the proteins. That’s where our effort comes into play,” said drug pipeline study co-author Stephan Irle, leader of the Computational Chemistry and Nanomaterial Sciences Group at Oak Ridge National Laboratory (ORNL). “We use these predictive quantum mechanical methods for the reliable prediction of binding affinity of ligands to the protein.”

In a prior study in pre-preprint at Chemrxiv, Jeremy Smith of ORNL used all-atom molecular dynamics to perform 51,575 docking calculations involving the six conformations of the S-protein:ACE2 interface and 8,669 ligands of the ZINC15 database. The 3000 top potential candidates were sifted out based on binding affinity to the active sites of the coronavirus spike protein.

Those top 3000 were then run through the gamut of quantum mechanics-based ranking refinement and binding analysis — a computationally demanding step that included solvent effects.

The top 100 strongest-binding compounds were validated and further refined using FMO-MP2/PCM single point energy calculations by Irle and colleagues. This created a short list of 47 ligands for further testing, saving precious time by focusing on the most effective inhibitors in an experiment-theory feedback.

The Stampede2 supercomputer at the Texas Advanced Computing Center is refining the results identified through a computational drug discovery pipeline for COVID-19 using a quantum chemistry procedure developed by researchers at Oak Ridge National Laboratory. Credit: TACC.

The computations were performed on TACC’s Stampede2 supercomputer, taking advantage of the 48 Intel Skylake CPU cores (2 sockets) within one compute node for a single geometry optimization. The Stampede2 supercomputer ranks #35 fastest globally and #3 in U.S. academia, according to the June 2021 Top500 rankings.
“The Stampede2 performance was very high. Also, the service and the support were always very active. We had a very positive experience,” said Van Quan Vuong, Co-PI of the quantum refinement project, study co-author on the drug discovery pipeline project, and a PhD student supervised by Irle at The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN.

“For one ligand and protein complex, we can get the binding energy (on Stampede2) in only one or two hours,” Irle added. “If we have another computer node, we can get the scoring function of a few hundred compound complexes in a day. That’s a pretty remarkable improvement over traditional DFT calculations.”

Quantum refinement processes are helping researchers at Oak Ridge National Laboratory zero in on key binding sites of the coronavirus spike protein. Ultimately, the refinement fits into a larger computational pipeline that scans through millions of compounds and finds the best ones for further testing. Illustration shows the process of protein structure preparation and fragmentation for quantum chemical docking refinement. In the case of the COVID-19 S-protein the ligand does not form a covalent bond. The colors on the right side indicate different fragments in the FMO formalism. Credit: Stephan Irle, ORNL.

The more recent work with the drug discovery pipeline was led by Jeremy Smith of ORNL. The lion’s share of the computation involved molecular dynamics simulations on the ORNL Summit IBM GPU-based system, the #2 fastest supercomputer in the world according to the June 2021 Top500 rankings. It performed about 2.07 million physical docking calculations on a smaller database and 2.4 billion docking calculations with the Enamine REAL database of compounds.

The quantum mechanical refinement protocol developed by Irle and Vuong using Stampede2 is still in its preliminary stages. The researchers plan to investigate 15 spike protein clusters and refine the binding energies of 150 protein ligand complexes in the pipeline study.

Said Irle: “Reducing the number of drug candidates and reliably narrowing down the most active species, eventually will result in a faster response to suddenly emergent pandemic situations like we had with COVID-19. This is a new approach, in that traditionally the involvement of quantum mechanics in computational drug discovery has been an exotic side field because it was considered too expensive. But with the method we have developed, we are in a position to do full quantum chemical analysis of the whole protein with the ligand in order to get reliable binding energies on the order of hours, rather than days.”

This ORNL research project and others studying COVID-19 are supported by the DOE Office of Science’s National Virtual Biotechnology Laboratory with funding provided by the Coronavirus CARES Act.

Funding and support for the drug discovery pipeline work was provided by the Alabama Supercomputer Authority, the National Institutes of Health, a National Science Foundation Graduate Research Fellowship, the Cancer Research Informatics Shared Resource Facility of the University of Kentucky Markey Cancer Center, and the University of Kentucky’s Center for Computational Sciences (CCS) high-performance computing resources. Computer time on Summit and Stampede2 was granted by the HPC Covid-19 Consortium.

Click here to learn more.


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

White House Scientific Integrity Report Addresses AI and ML Ethics

January 26, 2022

Earlier this month, the White House Office of Science and Technology Policy (OSTP) Scientific Integrity Task Force released a report titled “Protecting the Integrity of Government Science.” While broad-based and over Read more…

IBM Quantum Debuts Classical Entanglement Forging to Expand Simulation Capabilities

January 26, 2022

IBM last week reported a new technique – entanglement forging – that uses both quantum and classical computing resources to double the size of select simulation problems that can be solved on current quantum computer Read more…

Lenovo Launches Its TruScale HPC as a Service Offering

January 26, 2022

Lenovo today announced TruScale High Performance Computing as a Service (HPCaaS), which it says will offer a “cloud-like experience” to HPC organizations of all sizes. The new HPC-as-a-Service is part of the TruScale Read more…

Ceremorphic Touts Its HPC/AI Silicon Technology as It Exits Stealth

January 25, 2022

In a market still filling with fledging silicon chips, Ceremorphic, Inc. has exited stealth and is telling the world about what it calls its patented new ThreadArch multi-thread processor technology that is intended to h Read more…

Quantum Watch: Neutral Atoms Draw Growing Attention as Promising Qubit Technology

January 25, 2022

Currently, there are many qubit technologies vying for sway in quantum computing. So far, superconducting (IBM, Google) and trapped ion (IonQ, Quantinuum) have dominated the conversation. Microsoft’s proposed topologic Read more…

AWS Solution Channel

Register for the AWS “Speeds n’ Feeds” event on Feb. 9th

Since the debut of the first ‘Beowulf’ cluster in 1994, HPC has been a race between technologists squeezing as much performance as possible from hardware, and scale economics driving mass-production prices to affordable levels. Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will b Read more…

Lenovo Launches Its TruScale HPC as a Service Offering

January 26, 2022

Lenovo today announced TruScale High Performance Computing as a Service (HPCaaS), which it says will offer a “cloud-like experience” to HPC organizations of Read more…

Ceremorphic Touts Its HPC/AI Silicon Technology as It Exits Stealth

January 25, 2022

In a market still filling with fledging silicon chips, Ceremorphic, Inc. has exited stealth and is telling the world about what it calls its patented new Thread Read more…

Quantum Watch: Neutral Atoms Draw Growing Attention as Promising Qubit Technology

January 25, 2022

Currently, there are many qubit technologies vying for sway in quantum computing. So far, superconducting (IBM, Google) and trapped ion (IonQ, Quantinuum) have Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called t Read more…

IBM Watson Health Finally Sold by IBM After 11 Months of Rumors

January 21, 2022

IBM has sold its underachieving IBM Watson Health unit for an undisclosed price tag to a global investment firm after almost a year’s worth of rumors that sai Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called t Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire