ORNL Researchers Use Titan to Accelerate Design, Training of Deep Learning Networks

January 10, 2018

OAK RIDGE, Tenn., Jan. 10, 2018 — A team of researchers from the Department of Energy’s Oak Ridge National Laboratory has married artificial intelligence and high-performance computing to achieve a peak speed of 20 petaflops in the generation and training of deep learning networks on the laboratory’s Titan supercomputer.

Deep learning is a burgeoning field of artificial intelligence that uses networks modeled after the human brain to “learn” how to distinguish features and patterns in vast datasets. Such networks hold great promise in the realization of numerous technologies, from self-driving cars to intelligent robots.

ORNL’s Steven Young (left) and Travis Johnston used Titan to prove the design and training of deep learning networks could be greatly accelerated with a capable computing system.

Due to its ability to make sense of massive amounts of data, researchers across the scientific spectrum are eager to refine deep learning and apply it to some of today’s most challenging science problems. One such effort is ORNL’s Advances in Machine Learning to Improve Scientific Discovery at Exascale and Beyond (ASCEND) project, which aims to use deep learning to make sense of the massive datasets produced by the world’s most sophisticated scientific experiments, such as those located at ORNL.

Analysis of such datasets generally requires existing neural networks to be modified, or novel networks designed and then “trained” so that they know precisely what to look for and can produce valid results.

This is a time-consuming and difficult task, but one that an ORNL team led by Robert Patton and including Steven Young and Travis Johnston recently demonstrated can be dramatically expedited with a capable computing system such as ORNL’s Titan, the nation’s fastest supercomputer for science.

To efficiently design neural networks capable of tackling scientific datasets and expediting breakthroughs, Patton’s team developed two codes for evolving (MENNDL) and fine-tuning (RAvENNA) deep neural network architectures.

Both codes can generate and train as many as 18,600 neural networks simultaneously. Peak performance can be estimated by randomly sampling, and then carefully profiling, several hundred of these independently trained networks.

Both codes achieved a peak performance of 20 petaflops, or 20 thousand trillion calculations per second, on Titan (or just under half of Titan’s single precision total peak performance). In practical terms, that translates to training 40-50,000 networks per hour.

“The real measure of success in the deep learning community is time-to-solution,” said Johnston. “And with a machine like Titan we are able to train an unparalleled number of highly accurate networks.”

Titan is a Cray hybrid system, meaning that it uses both traditional CPUs and graphics processing units (GPUs) to tackle complex calculations for big science problems efficiently; the GPUs also happen to be the processor of choice for training deep learning networks.

The team’s work demonstrates that with the right high-performance computing system researchers can efficiently train large numbers of networks, which can then be used to help them tackle today’s increasingly data-heavy experiments and simulations.

This efficient design of deep neural networks will enable researchers to deploy highly accurate, custom-designed models, saving both time and money by freeing the scientist from the task of designing a network from the ground up.

And because the OLCF’s next leadership computing system, Summit, features a deep-learning friendly architecture with enhanced GPUs and complementary Tensor cores, the team is confident both codes will only get faster.

“Out of the box, without tuning to Summit’s unique architecture, we are expecting an increase in performance up to 50 times,” said Johnston.

With that sort of network training capability, Summit could be indispensable to researchers across the scientific spectrum looking to deep learning to help them tackle some of science’s most immense challenges.

Patton’s team is not waiting for the improved hardware to start tackling current scientific data challenges; they have already deployed their codes to assist domain scientists at the Department of Energy’s Fermilab in Batavia, Illinois.

Researchers at Fermilab used MENNDL to better understand how neutrinos interact with ordinary matter by producing a classification network to support their Main Injector Experiment for v-A (MINERvA), a neutrino scattering experiment. The task, known as vertex reconstruction, required a network to analyze images and precisely identify the location where neutrinos interact with one of many targets—a task akin to finding the aerial source of a starburst of fireworks.

In only 24 hours, MENNDL produced optimized networks that outperformed any previously handcrafted network—an achievement that could easily have taken scientists months to accomplish. To identify the high-performing network, MENNDL evaluated approximately 500,000 neural networks, training them on a data set consisting of 800,000 images of neutrino events, steadily using 18,000 of Titan’s nodes.

“You need something like MENNDL to explore this effectively infinite space of possible networks, but you want to do it efficiently,” Young said. “What Titan does is bring the time to solution down to something practical.”

And with Summit to come online this year, the future of deep learning in big science looks bright indeed.

The ASCEND project is funded by DOE’s Office of Science and led by ORNL’s Thomas Potok, group lead for the Computational Data Analytics (CDA) group. Titan is part of the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility.

UT-Battelle manages ORNL for DOE’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

Intel, Micron to Go Their Separate 3D NAND Ways

January 10, 2018

The announcement on Monday (Jan. 8) that Intel and Micron have decided to “update” – that is, end – their long-term joint development partnership for 3D NAND technology is nearly as interesting an exercise in pub Read more…

By Doug Black

HPE Extreme Performance Solutions

The Living Heart Project Wins Three Prestigious Awards for HPC Simulation

Imagine creating a treatment plan for a patient on the other side of the world, or testing a drug without ever putting subjects at risk. Read more…

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect application performance by 10-30 percent. The patch makes any call fro Read more…

By Rosemary Francis

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Independent Hyperion Research Will Chart its Own Course

December 19, 2017

Hyperion Research, formerly the HPC research and consulting practice within IDC, has become an independent company with Earl Joseph, the long-time leader of the Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This