ORNL Researchers Use Titan to Accelerate Design, Training of Deep Learning Networks

January 10, 2018

OAK RIDGE, Tenn., Jan. 10, 2018 — A team of researchers from the Department of Energy’s Oak Ridge National Laboratory has married artificial intelligence and high-performance computing to achieve a peak speed of 20 petaflops in the generation and training of deep learning networks on the laboratory’s Titan supercomputer.

Deep learning is a burgeoning field of artificial intelligence that uses networks modeled after the human brain to “learn” how to distinguish features and patterns in vast datasets. Such networks hold great promise in the realization of numerous technologies, from self-driving cars to intelligent robots.

ORNL’s Steven Young (left) and Travis Johnston used Titan to prove the design and training of deep learning networks could be greatly accelerated with a capable computing system.

Due to its ability to make sense of massive amounts of data, researchers across the scientific spectrum are eager to refine deep learning and apply it to some of today’s most challenging science problems. One such effort is ORNL’s Advances in Machine Learning to Improve Scientific Discovery at Exascale and Beyond (ASCEND) project, which aims to use deep learning to make sense of the massive datasets produced by the world’s most sophisticated scientific experiments, such as those located at ORNL.

Analysis of such datasets generally requires existing neural networks to be modified, or novel networks designed and then “trained” so that they know precisely what to look for and can produce valid results.

This is a time-consuming and difficult task, but one that an ORNL team led by Robert Patton and including Steven Young and Travis Johnston recently demonstrated can be dramatically expedited with a capable computing system such as ORNL’s Titan, the nation’s fastest supercomputer for science.

To efficiently design neural networks capable of tackling scientific datasets and expediting breakthroughs, Patton’s team developed two codes for evolving (MENNDL) and fine-tuning (RAvENNA) deep neural network architectures.

Both codes can generate and train as many as 18,600 neural networks simultaneously. Peak performance can be estimated by randomly sampling, and then carefully profiling, several hundred of these independently trained networks.

Both codes achieved a peak performance of 20 petaflops, or 20 thousand trillion calculations per second, on Titan (or just under half of Titan’s single precision total peak performance). In practical terms, that translates to training 40-50,000 networks per hour.

“The real measure of success in the deep learning community is time-to-solution,” said Johnston. “And with a machine like Titan we are able to train an unparalleled number of highly accurate networks.”

Titan is a Cray hybrid system, meaning that it uses both traditional CPUs and graphics processing units (GPUs) to tackle complex calculations for big science problems efficiently; the GPUs also happen to be the processor of choice for training deep learning networks.

The team’s work demonstrates that with the right high-performance computing system researchers can efficiently train large numbers of networks, which can then be used to help them tackle today’s increasingly data-heavy experiments and simulations.

This efficient design of deep neural networks will enable researchers to deploy highly accurate, custom-designed models, saving both time and money by freeing the scientist from the task of designing a network from the ground up.

And because the OLCF’s next leadership computing system, Summit, features a deep-learning friendly architecture with enhanced GPUs and complementary Tensor cores, the team is confident both codes will only get faster.

“Out of the box, without tuning to Summit’s unique architecture, we are expecting an increase in performance up to 50 times,” said Johnston.

With that sort of network training capability, Summit could be indispensable to researchers across the scientific spectrum looking to deep learning to help them tackle some of science’s most immense challenges.

Patton’s team is not waiting for the improved hardware to start tackling current scientific data challenges; they have already deployed their codes to assist domain scientists at the Department of Energy’s Fermilab in Batavia, Illinois.

Researchers at Fermilab used MENNDL to better understand how neutrinos interact with ordinary matter by producing a classification network to support their Main Injector Experiment for v-A (MINERvA), a neutrino scattering experiment. The task, known as vertex reconstruction, required a network to analyze images and precisely identify the location where neutrinos interact with one of many targets—a task akin to finding the aerial source of a starburst of fireworks.

In only 24 hours, MENNDL produced optimized networks that outperformed any previously handcrafted network—an achievement that could easily have taken scientists months to accomplish. To identify the high-performing network, MENNDL evaluated approximately 500,000 neural networks, training them on a data set consisting of 800,000 images of neutrino events, steadily using 18,000 of Titan’s nodes.

“You need something like MENNDL to explore this effectively infinite space of possible networks, but you want to do it efficiently,” Young said. “What Titan does is bring the time to solution down to something practical.”

And with Summit to come online this year, the future of deep learning in big science looks bright indeed.

The ASCEND project is funded by DOE’s Office of Science and led by ORNL’s Thomas Potok, group lead for the Computational Data Analytics (CDA) group. Titan is part of the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility.

UT-Battelle manages ORNL for DOE’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Students Gird for Cluster Mayhem at ASC19

April 23, 2019

Final cluster configurations have been set, and competitors in the ASC19 Student Supercomputer Challenge have started running the various AI models and HPC benchmarks that will determine who is declared champion. But if Read more…

By Alex Woodie

Student Cluster Season Opener: ASC19

April 22, 2019

Calling all computer sports fans! Now hear this:  The 2019 Student Cluster Competition season is officially underway with the beginning of the ASC19 event on Tuesday, April 22nd. For you millions of student cluster c Read more…

By Dan Stark

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This