ORNL Researchers Use Titan to Accelerate Design, Training of Deep Learning Networks

January 10, 2018

OAK RIDGE, Tenn., Jan. 10, 2018 — A team of researchers from the Department of Energy’s Oak Ridge National Laboratory has married artificial intelligence and high-performance computing to achieve a peak speed of 20 petaflops in the generation and training of deep learning networks on the laboratory’s Titan supercomputer.

Deep learning is a burgeoning field of artificial intelligence that uses networks modeled after the human brain to “learn” how to distinguish features and patterns in vast datasets. Such networks hold great promise in the realization of numerous technologies, from self-driving cars to intelligent robots.

ORNL’s Steven Young (left) and Travis Johnston used Titan to prove the design and training of deep learning networks could be greatly accelerated with a capable computing system.

Due to its ability to make sense of massive amounts of data, researchers across the scientific spectrum are eager to refine deep learning and apply it to some of today’s most challenging science problems. One such effort is ORNL’s Advances in Machine Learning to Improve Scientific Discovery at Exascale and Beyond (ASCEND) project, which aims to use deep learning to make sense of the massive datasets produced by the world’s most sophisticated scientific experiments, such as those located at ORNL.

Analysis of such datasets generally requires existing neural networks to be modified, or novel networks designed and then “trained” so that they know precisely what to look for and can produce valid results.

This is a time-consuming and difficult task, but one that an ORNL team led by Robert Patton and including Steven Young and Travis Johnston recently demonstrated can be dramatically expedited with a capable computing system such as ORNL’s Titan, the nation’s fastest supercomputer for science.

To efficiently design neural networks capable of tackling scientific datasets and expediting breakthroughs, Patton’s team developed two codes for evolving (MENNDL) and fine-tuning (RAvENNA) deep neural network architectures.

Both codes can generate and train as many as 18,600 neural networks simultaneously. Peak performance can be estimated by randomly sampling, and then carefully profiling, several hundred of these independently trained networks.

Both codes achieved a peak performance of 20 petaflops, or 20 thousand trillion calculations per second, on Titan (or just under half of Titan’s single precision total peak performance). In practical terms, that translates to training 40-50,000 networks per hour.

“The real measure of success in the deep learning community is time-to-solution,” said Johnston. “And with a machine like Titan we are able to train an unparalleled number of highly accurate networks.”

Titan is a Cray hybrid system, meaning that it uses both traditional CPUs and graphics processing units (GPUs) to tackle complex calculations for big science problems efficiently; the GPUs also happen to be the processor of choice for training deep learning networks.

The team’s work demonstrates that with the right high-performance computing system researchers can efficiently train large numbers of networks, which can then be used to help them tackle today’s increasingly data-heavy experiments and simulations.

This efficient design of deep neural networks will enable researchers to deploy highly accurate, custom-designed models, saving both time and money by freeing the scientist from the task of designing a network from the ground up.

And because the OLCF’s next leadership computing system, Summit, features a deep-learning friendly architecture with enhanced GPUs and complementary Tensor cores, the team is confident both codes will only get faster.

“Out of the box, without tuning to Summit’s unique architecture, we are expecting an increase in performance up to 50 times,” said Johnston.

With that sort of network training capability, Summit could be indispensable to researchers across the scientific spectrum looking to deep learning to help them tackle some of science’s most immense challenges.

Patton’s team is not waiting for the improved hardware to start tackling current scientific data challenges; they have already deployed their codes to assist domain scientists at the Department of Energy’s Fermilab in Batavia, Illinois.

Researchers at Fermilab used MENNDL to better understand how neutrinos interact with ordinary matter by producing a classification network to support their Main Injector Experiment for v-A (MINERvA), a neutrino scattering experiment. The task, known as vertex reconstruction, required a network to analyze images and precisely identify the location where neutrinos interact with one of many targets—a task akin to finding the aerial source of a starburst of fireworks.

In only 24 hours, MENNDL produced optimized networks that outperformed any previously handcrafted network—an achievement that could easily have taken scientists months to accomplish. To identify the high-performing network, MENNDL evaluated approximately 500,000 neural networks, training them on a data set consisting of 800,000 images of neutrino events, steadily using 18,000 of Titan’s nodes.

“You need something like MENNDL to explore this effectively infinite space of possible networks, but you want to do it efficiently,” Young said. “What Titan does is bring the time to solution down to something practical.”

And with Summit to come online this year, the future of deep learning in big science looks bright indeed.

The ASCEND project is funded by DOE’s Office of Science and led by ORNL’s Thomas Potok, group lead for the Computational Data Analytics (CDA) group. Titan is part of the Oak Ridge Leadership Computing Facility, a DOE Office of Science User Facility.

UT-Battelle manages ORNL for DOE’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire