ORNL to Harness Computational Power of Two DGX-2s

February 7, 2019

Feb. 7 — As home to three top-ranked supercomputers of the last decade, the US Department of Energy’s (DOE’s) Oak Ridge National Laboratory (ORNL) has become synonymous with scientific computing at the largest scales.

Getting the most out of these science machines, however, requires a willingness to experiment with problems and systems of every size and scale. This is especially important as technology vendors introduce new system architectures and as scientists’ problem-solving toolkit expands to include artificial intelligence (AI) and advanced data analysis.

In that spirit, ORNL recently installed two NVIDIA DGX-2 systems, powerful GPU-accelerated appliances that will provide researchers with enhanced opportunities to conduct science—machine learning and data-intensive workloads in particular. The appliances will also provide an on-ramp to ORNL’s Summit—the world’s most powerful supercomputer—by enabling smaller and more experimental projects to be developed and tested before they run on the 200-petaflop machine. The DGX-2 appliances reside in the laboratory’s Compute and Data Environment for Science (CADES), which offers compute and data services for ORNL researchers.

“As Summit enters production, these DGX-2 systems supply ORNL with exploratory multipurpose computing resources,” said CADES director Arjun Shankar. “Early results suggest the DGX-2s will provide novel opportunities in data analysis, machine learning, and modeling and simulation that support the AI-driven transformation that is changing how science is conducted.”

The DGX-2 represents the latest step-change in AI appliances, housing 16 fully interconnected NVIDIA Tesla V100 GPUs with increased GPU memory, a powerful combination that expands the types of problems scientists can tackle in a unified environment. In addition to a standard DGX-2, ORNL received the newly available DGX-2H, which offers higher performance through upgraded CPUs and faster-clocked GPUs.

ORNL’s DGX-2 and DGX-2H appliances provide laboratory researchers with enhanced opportunities to conduct science and serve as an onramp to ORNL’s Summit supercomputer

Since NVIDIA debuted the DGX line in 2016, ORNL has deployed the appliances throughout the laboratory to connect researchers with a platform that excels at executing machine learning techniques with the potential to automate some of the time-intensive analysis inherent in research. This is especially relevant to ORNL’s world-class experimental facilities, such as the Spallation Neutron Source, which produce large, unique datasets in need of analysis and automated data workflows.

Appliance for Science

In late 2018, Arvind Ramanathan, a staff scientist in ORNL’s Computational Sciences and Engineering Division, and his team were among the first groups to receive extended time on the DGX-2s. The team used the opportunity to train and optimize algorithms that belong to a class of machine learning called reinforcement learning, in which an “agent” attempts to master its environment by performing actions and evaluating the results without any preexisting knowledge.

Reinforcement-learning algorithms, famously showcased by Google’s AlphaGo program, have proven capable of achieving prescribed goals, such as winning games, but optimizing the preset parameters that control their decision-making can be difficult. Running multiple algorithms simultaneously on the DGX-2 systems allowed Ramanathan’s team to identify superior optimization strategies via an ORNL-developed software called HyperSpace in a fraction of the time another system would require.

“We couldn’t have done this without a DGX-2 because the problem space that we were exploring was so large and sample inefficient,” Ramanathan said. “Because these GPUs can essentially be used in a unified way, we can do things that are much more difficult to do on other systems, especially in terms of moving data and doing analysis.”

Though ORNL is known for conducting leadership-scale science on its massively parallel supercomputers, there are instances when an innovative smaller machine can be useful. Refining algorithms on the DGX-2 can improve researchers’ confidence that their AI software is ready to be deployed later at scale. Additionally, workloads that may be poorly suited to run on a supercomputer—jobs that don’t scale or jobs that need to run for extended periods of time, for example—could be carried out on a DGX-2 appliance.

The DGX-2s also have something to offer to traditional modeling and simulation. Researchers can run simulations side by side with AI to extend simulations further than they would otherwise go, using AI-recognized patterns in the data to “steer” the simulation correctly. A project supported by ORNL’s Laboratory Directed Research and Development program is dedicated to a molecular dynamics framework called Molecules that can execute AI-informed simulation.

“Traditionally, running AI side by side with simulation would be too expensive,” Ramanathan said, “but state-of-the-art systems like Summit and the DGX-2 enable this in such a way that we can think of this arrangement as a fused workflow in some sense.”

Currently, CADES staff are working to integrate the appliances into the data center’s shared environment so researchers can submit jobs as easily as they can to any other CADES resource. The two DGX-2 systems have been connected by a dedicated EDR InfiniBand network to combine the systems’ capabilities.

“The idea is that researchers will be able to schedule up to 32 GPUs at one time to run in parallel,” said CADES team lead Brian Zachary.

HyperSpace software development is part of the CANcer Distributed Learning Environment project, a cancer research effort supported by the Exascale Computing Project.

UT-Battelle LLC manages ORNL for DOE’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit https://science.energy.gov.


Source: Jonathan Hines, ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This