ORNL Using AI, Big Data Research Tools to Enable Materials Science Discoveries

May 5, 2021

May 5, 2021 — At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

“AI gives scientists the ability to extract insights from an ever-expanding volume of data,” said David Womble, ORNL’s AI program director. “New AI tools, together with world-class computing capabilities, are critical to maintaining scientific leadership.”

AI uses computers to mine mountains of data for scientific and engineering insights. Starting with high-quality data matters. Well-characterized materials create a strong knowledge foundation for the design of new materials that launch technologies and expand economies. ORNL has a history of materials development dating back to World War II and a rich archive of data generated on world-class instruments by expert researchers. Increasingly, researchers generate high-resolution materials data at a volume, variety and velocity they never before have had to tackle.

“Ten years ago, a Ph.D. student working on steels might analyze five precipitates a day,” said electron microscopist Chad Parish of ORNL. Such precipitates could embrittle an alloy and cause it to fail. “Now we’ve developed a technique that lets us do a thousand precipitates in five hours. We’re drowning in data. AI may hold the key to making the best use of it all.”

Two types of AI help make sense of big data. Machine learning runs algorithms on high-performance computers to find correlations within large data sets and determine how well they match expectations. In doing so, it reveals features that traditional data analyses may miss because they are subtle, infrequent, complex or unexpected. A step further, deep learning models the workings of the human brain (e.g., applying logic and expertise) to distinguish features in data sets that improve discovery, learning and decision making.

“We can now design machines to do the work that once required a human expert, except much faster and on a larger scale,” said ORNL materials scientist Stephen Jesse.

Harnessing machines

David Womble, ORNL’s program director for artificial intelligence, relies on high-performance computing resources like Summit, America’s smartest supercomputer. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL researchers have stood at the forefront of efforts to harness machines to propel progress in materials science. Starting in 1992, Bobby Sumpter worked on foundational theory and chemical/materials science aspects of machine learning. Markus Eisenbach joined him in creating the machine learning basis for integrating imaging instruments and high-performance computers. They ran theory-based models on supercomputers and validated the results against experimental findings.

In 2001, when the Materials Research Society issued a conference proceeding on AI methods in materials science, ORNL researchers were well represented, advancing methods to analyze, compress and visualize multidimensional data.

At ORNL’s Center for Nanophase Materials Sciences, Sergei Kalinin, a founding member of the American Physical Society topical group on data science, works with colleagues to pioneer automated analysis of growing data from high-resolution microscopy experiments. “We turned to machine learning methods because traditional approaches were not practical or sufficient,” Kalinin said.

Around 2008, ORNL researchers began publishing papers advancing machine learning and deep learning in processing big data from microscopy and tying experimental results to theoretical models. This effort grew over the subsequent decade to include AI advances such as:

  • Complex scanning probe microscope imaging and spectroscopy methods to reveal nanoscale properties in greater detail
  • Complete capture of big data streams from microscope detectors
  • Workflows for on-the-fly analytics of scanning transmission electron microscopy data
  • Automated conversion of microscopy data into libraries of structures and defects
  • Algorithms for learning physical laws from observational data
  • Assistance to tune microscopes, choose regions of interest in samples and control atom-by-atom assembly

“We are still just scratching the surface with the use of deep learning for quantitative structural analysis of microscopy data,” ORNL’s Albina Borisevich said. “If we can transition from isolated problems to a more general approach, it can completely revolutionize the field.”

For example, ORNL researchers Wei-Ren Chen and Changwoo Do at the Spallation Neutron Source use machine learning to assist in small-angle neutron scattering characterization of a wide range of material structures. The machine learning methods may help them suggest models for data analysis.

ORNL researchers such as Suhas Somnath also have investigated ways to share data widely. He scales codes to run on distributed computing architectures and develops data infrastructure solutions.

“Continual advancements in automation, computational power, and resolution and speed of detectors in instruments now result in ever larger, numerous, more diverse and complex data sets from both simulations and experiments,” said Somnath. “DataFed and the CADES Data Gateway will imminently facilitate collaborative collection, curation, annotation and sharing of data.”

The Summit supercomputer at the Oak Ridge Leadership Computing Facility is ideally suited for training and deployment of AI algorithms on large data sets owing to its 27,648 state-of-art graphics processing units, high-speed file system and large memory. A recent materials microscopy application demonstrated AI scaled to use all of Summit while running at 93% efficiency.

Quality in, quality out

“The major focus in AI tends to be on data analytics, but we should emphasize that the data itself is important,” said ORNL materials scientist Dongwon Shin, who runs thermodynamic models on supercomputers to design high-performance alloys.

He said the ORNL advantage is akin to “grandma knowledge.” You may follow a cookie recipe to the letter, but your grandmother — with her in-depth knowledge of ingredient interactions, etc. — will out-bake you every time. Likewise, ORNL researchers who have worked on materials for decades have world-class data sets with detailed pedigrees.

Shin realized that most machine learning tools were developed by and for programming experts, not the domain scientists. His team developed an open-source toolkit called ASCENDS that lets scientists with little knowledge of programming or data science apply data analytics as easily as using Excel. ASCENDS analyzes correlations between input features and target properties to facilitate the generation and validation of hypotheses and training of machine learning models that predict materials behavior.

Visualizing material success

Visualizing big data is an additional challenge. Materials scientists often use software that comes with the instruments they buy. “Much of the vendor software presents the data collected by instruments in a bad way,” said ORNL’s Philip Edmondson, who investigates materials for nuclear fission and fusion applications.

The scientific community is clamoring for open-source software to help turn big data into something the human mind can interpret. Edmondson and Parish have recommended best practices for improving data visualization.

Materials for advanced nuclear reactors are irradiated in ORNL’s High Flux Isotope Reactor. Then scientists characterize the specimens in detail, and machine learning methods analyze the measurements to determine how irradiation changes the microstructures and properties that are likely to affect the lifetimes of fission or fusion energy systems. “With nuclear materials, there might be millions of dollars and five or more years of investment behind getting one three-millimeter sample into the electron microscope,” Parish explained. “You want to make sure that you’re gleaning all of the scientific insight you can from that sample.”

“We’re investing a lot of money and time into collecting good data,” Edmondson said. “Let’s understand it.”

UT-Battelle manages ORNL for the Department of Energy’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. The Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

White House Scientific Integrity Report Addresses AI and ML Ethics

January 26, 2022

Earlier this month, the White House Office of Science and Technology Policy (OSTP) Scientific Integrity Task Force released a report titled “Protecting the Integrity of Government Science.” While broad-based and over Read more…

IBM Quantum Debuts Classical Entanglement Forging to Expand Simulation Capabilities

January 26, 2022

IBM last week reported a new technique – entanglement forging – that uses both quantum and classical computing resources to double the size of select simulation problems that can be solved on current quantum computer Read more…

Lenovo Launches Its TruScale HPC as a Service Offering

January 26, 2022

Lenovo today announced TruScale High Performance Computing as a Service (HPCaaS), which it says will offer a “cloud-like experience” to HPC organizations of all sizes. The new HPC-as-a-Service is part of the TruScale Read more…

Ceremorphic Touts Its HPC/AI Silicon Technology as It Exits Stealth

January 25, 2022

In a market still filling with fledging silicon chips, Ceremorphic, Inc. has exited stealth and is telling the world about what it calls its patented new ThreadArch multi-thread processor technology that is intended to h Read more…

Quantum Watch: Neutral Atoms Draw Growing Attention as Promising Qubit Technology

January 25, 2022

Currently, there are many qubit technologies vying for sway in quantum computing. So far, superconducting (IBM, Google) and trapped ion (IonQ, Quantinuum) have dominated the conversation. Microsoft’s proposed topologic Read more…

AWS Solution Channel

Register for the AWS “Speeds n’ Feeds” event on Feb. 9th

Since the debut of the first ‘Beowulf’ cluster in 1994, HPC has been a race between technologists squeezing as much performance as possible from hardware, and scale economics driving mass-production prices to affordable levels. Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will b Read more…

Lenovo Launches Its TruScale HPC as a Service Offering

January 26, 2022

Lenovo today announced TruScale High Performance Computing as a Service (HPCaaS), which it says will offer a “cloud-like experience” to HPC organizations of Read more…

Ceremorphic Touts Its HPC/AI Silicon Technology as It Exits Stealth

January 25, 2022

In a market still filling with fledging silicon chips, Ceremorphic, Inc. has exited stealth and is telling the world about what it calls its patented new Thread Read more…

Quantum Watch: Neutral Atoms Draw Growing Attention as Promising Qubit Technology

January 25, 2022

Currently, there are many qubit technologies vying for sway in quantum computing. So far, superconducting (IBM, Google) and trapped ion (IonQ, Quantinuum) have Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called t Read more…

IBM Watson Health Finally Sold by IBM After 11 Months of Rumors

January 21, 2022

IBM has sold its underachieving IBM Watson Health unit for an undisclosed price tag to a global investment firm after almost a year’s worth of rumors that sai Read more…

Supercomputer Analysis Shows the Atmospheric Reach of the Tonga Eruption

January 21, 2022

On Saturday, an enormous eruption on the volcanic islands of Hunga Tonga and Hunga Haʻapai shook the Pacific Ocean. The explosion, which could be heard six tho Read more…

NSB Issues US State of Science and Engineering 2022 Report

January 20, 2022

This week the National Science Board released its biannual U.S. State of Science and Engineering 2022 report, as required by the NSF Act. Broadly, the report presents a near-term view of S&E based mostly on 2019 data. To a large extent, this year’s edition echoes trends from the last few reports. The U.S. is still a world leader in R&D spending and S&E education... Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Meta’s Massive New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called t Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire