ORNL Using AI, Big Data Research Tools to Enable Materials Science Discoveries

May 5, 2021

May 5, 2021 — At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

“AI gives scientists the ability to extract insights from an ever-expanding volume of data,” said David Womble, ORNL’s AI program director. “New AI tools, together with world-class computing capabilities, are critical to maintaining scientific leadership.”

AI uses computers to mine mountains of data for scientific and engineering insights. Starting with high-quality data matters. Well-characterized materials create a strong knowledge foundation for the design of new materials that launch technologies and expand economies. ORNL has a history of materials development dating back to World War II and a rich archive of data generated on world-class instruments by expert researchers. Increasingly, researchers generate high-resolution materials data at a volume, variety and velocity they never before have had to tackle.

“Ten years ago, a Ph.D. student working on steels might analyze five precipitates a day,” said electron microscopist Chad Parish of ORNL. Such precipitates could embrittle an alloy and cause it to fail. “Now we’ve developed a technique that lets us do a thousand precipitates in five hours. We’re drowning in data. AI may hold the key to making the best use of it all.”

Two types of AI help make sense of big data. Machine learning runs algorithms on high-performance computers to find correlations within large data sets and determine how well they match expectations. In doing so, it reveals features that traditional data analyses may miss because they are subtle, infrequent, complex or unexpected. A step further, deep learning models the workings of the human brain (e.g., applying logic and expertise) to distinguish features in data sets that improve discovery, learning and decision making.

“We can now design machines to do the work that once required a human expert, except much faster and on a larger scale,” said ORNL materials scientist Stephen Jesse.

Harnessing machines

David Womble, ORNL’s program director for artificial intelligence, relies on high-performance computing resources like Summit, America’s smartest supercomputer. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL researchers have stood at the forefront of efforts to harness machines to propel progress in materials science. Starting in 1992, Bobby Sumpter worked on foundational theory and chemical/materials science aspects of machine learning. Markus Eisenbach joined him in creating the machine learning basis for integrating imaging instruments and high-performance computers. They ran theory-based models on supercomputers and validated the results against experimental findings.

In 2001, when the Materials Research Society issued a conference proceeding on AI methods in materials science, ORNL researchers were well represented, advancing methods to analyze, compress and visualize multidimensional data.

At ORNL’s Center for Nanophase Materials Sciences, Sergei Kalinin, a founding member of the American Physical Society topical group on data science, works with colleagues to pioneer automated analysis of growing data from high-resolution microscopy experiments. “We turned to machine learning methods because traditional approaches were not practical or sufficient,” Kalinin said.

Around 2008, ORNL researchers began publishing papers advancing machine learning and deep learning in processing big data from microscopy and tying experimental results to theoretical models. This effort grew over the subsequent decade to include AI advances such as:

  • Complex scanning probe microscope imaging and spectroscopy methods to reveal nanoscale properties in greater detail
  • Complete capture of big data streams from microscope detectors
  • Workflows for on-the-fly analytics of scanning transmission electron microscopy data
  • Automated conversion of microscopy data into libraries of structures and defects
  • Algorithms for learning physical laws from observational data
  • Assistance to tune microscopes, choose regions of interest in samples and control atom-by-atom assembly

“We are still just scratching the surface with the use of deep learning for quantitative structural analysis of microscopy data,” ORNL’s Albina Borisevich said. “If we can transition from isolated problems to a more general approach, it can completely revolutionize the field.”

For example, ORNL researchers Wei-Ren Chen and Changwoo Do at the Spallation Neutron Source use machine learning to assist in small-angle neutron scattering characterization of a wide range of material structures. The machine learning methods may help them suggest models for data analysis.

ORNL researchers such as Suhas Somnath also have investigated ways to share data widely. He scales codes to run on distributed computing architectures and develops data infrastructure solutions.

“Continual advancements in automation, computational power, and resolution and speed of detectors in instruments now result in ever larger, numerous, more diverse and complex data sets from both simulations and experiments,” said Somnath. “DataFed and the CADES Data Gateway will imminently facilitate collaborative collection, curation, annotation and sharing of data.”

The Summit supercomputer at the Oak Ridge Leadership Computing Facility is ideally suited for training and deployment of AI algorithms on large data sets owing to its 27,648 state-of-art graphics processing units, high-speed file system and large memory. A recent materials microscopy application demonstrated AI scaled to use all of Summit while running at 93% efficiency.

Quality in, quality out

“The major focus in AI tends to be on data analytics, but we should emphasize that the data itself is important,” said ORNL materials scientist Dongwon Shin, who runs thermodynamic models on supercomputers to design high-performance alloys.

He said the ORNL advantage is akin to “grandma knowledge.” You may follow a cookie recipe to the letter, but your grandmother — with her in-depth knowledge of ingredient interactions, etc. — will out-bake you every time. Likewise, ORNL researchers who have worked on materials for decades have world-class data sets with detailed pedigrees.

Shin realized that most machine learning tools were developed by and for programming experts, not the domain scientists. His team developed an open-source toolkit called ASCENDS that lets scientists with little knowledge of programming or data science apply data analytics as easily as using Excel. ASCENDS analyzes correlations between input features and target properties to facilitate the generation and validation of hypotheses and training of machine learning models that predict materials behavior.

Visualizing material success

Visualizing big data is an additional challenge. Materials scientists often use software that comes with the instruments they buy. “Much of the vendor software presents the data collected by instruments in a bad way,” said ORNL’s Philip Edmondson, who investigates materials for nuclear fission and fusion applications.

The scientific community is clamoring for open-source software to help turn big data into something the human mind can interpret. Edmondson and Parish have recommended best practices for improving data visualization.

Materials for advanced nuclear reactors are irradiated in ORNL’s High Flux Isotope Reactor. Then scientists characterize the specimens in detail, and machine learning methods analyze the measurements to determine how irradiation changes the microstructures and properties that are likely to affect the lifetimes of fission or fusion energy systems. “With nuclear materials, there might be millions of dollars and five or more years of investment behind getting one three-millimeter sample into the electron microscope,” Parish explained. “You want to make sure that you’re gleaning all of the scientific insight you can from that sample.”

“We’re investing a lot of money and time into collecting good data,” Edmondson said. “Let’s understand it.”

UT-Battelle manages ORNL for the Department of Energy’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. The Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit energy.gov/science.


Source: ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire