ORNL’s GS Jung Develops Essential Tools of Multiscale Models with Computational Science

September 26, 2022

Sept. 26, 2022 — Gang Seob “GS” Jung has known from the time he was in middle school that he was interested in science.

“I liked to calculate how things move. You could predict something. I felt like it was a game or a fun puzzle. It was interesting to imagine different initial conditions and guess how it was going to move,” he said. “I am still solving puzzles using computational modeling for science.”

Distinguished staff fellow Gang Seob “GS” Jung. Credit: Carlos Jones/ORNL.

A science fiction movie he saw as a teenager, “The Invisible Man,” furthered his interest in science. The plot featured a scientist who, using computers, developed a medicine to make matter invisible and then used it on human tissue.

The movie had a profound impact on him, Jung said, and motivated a growing interest in computational modeling and simulation.

“That was quite memorable. That was one motivation to do modeling,” he recalled.

What the future Eugene P. Wigner Fellow did not know then, however, was that he would end up studying physics, computational science, engineering and materials science — in Korea, Japan and the United States — all of which brought him to Oak Ridge National Laboratory and his Wigner Fellowship.

Jung, a member of the Computing and Computational Sciences Directorate at ORNL, is using his fellowship to develop essential tools of multiscale models for universal materials. He is interested in modeling materials using computational science to help develop new technology for new materials.

And there is almost nowhere better to do it, he said.

“There are a lot of resources for modeling and simulation, and people working on different experiments and topics. It’s really a nice opportunity to work with them,” Jung said.

“I want to synthesize and characterize the atomic level of material using computation. My goal is to study the fundamental, atomic scale using quantum mechanics to understand very small-scale properties, and try to upscale from that to a more meaningful scale used in manufacturing.”

The main contribution of his fellowship will be improving understanding of mechanical and thermodynamical behaviors of materials. “In the longer term, I hope my project will be the cornerstone of a virtual lab where novel materials can be designed, synthesized and characterized,” Jung said.

That virtual laboratory will enable scientists to analyze materials by combining and bridging advanced computational methods at different scales. Such understanding can help in the semiconductor industry, for example, perhaps leading to a better material for computer chips.

Energy efficiency is another area that could benefit from this research, and there are many others, Jung said, in which modeling for materials design and synthesis is important.

Working with ORNL’s C4WARD project, he is exploring how coal changes in the transition from the mine to more valuable products. These insights could inform how carbon fiber forms at the atomic scale and help identify what molecules would be good for carbon processing, he said.

Carbon capture is another area that could benefit from Jung’s research. “Maybe there is a new process or new material for a more energy-efficient way to capture carbon,” he said. “We need insight at the atomic scale to identify what molecule might be good for processing.

“I’m trying to develop a computational tool and models to help my colleagues who are working on that. I want to provide the understanding for them to work more efficiently,” he added.

Jung’s undergraduate experience in Japan helped develop his interests. Majoring in physics, he earned his master’s degree as well by creating his first simulation that could be applied to many different applications, such as biology, semiconductor manufacturing and designing structural materials at the atomic scale.

To satisfy South Korea’s military requirement, Jung worked at LG Corp. in semiconducting, electronics and optics, gaining experience with macroscale simulations. But, he said, he wanted to do more atomic-scale modeling. After learning parallel computing and creating a molecular dynamic simulation tool at a supercomputer institute in Korea, he joined MIT’s doctorate program in civil and environmental engineering. That allowed him to work at the atomic level with hydroxyapatite and collagen — the strong building blocks of human bone and muscle, as well as spider silk — studying the mechanisms that enable their strength.

At MIT, he worked on the application side of modeling, using molecular dynamics simulations to understand the atomic-scale behaviors of materials. “I had to develop my own tools and parameters for those applications,” he said.

His dissertation focused on developing multiscale models to understand fracture and synthesis processes of two-dimensional materials such as graphene, tungsten disulfide and molybdenum disulfide. Since joining ORNL as a Wigner Fellow, he has used the tools he developed as a doctoral student to examine how these materials behave at the atomic level when they grow, collaborating with other researchers at ORNL’s Center for Nanophase Materials Sciences to understand fundamental mechanisms and properties. The work was published in ACS Nano in 2021.

Mentored by Computational Chemistry and Nanomaterials Sciences group leader Stephan Irle, Jung develops integrated multiscale models that enable predictive design and simulation of materials.

Jung is happy to be in Oak Ridge. In Cambridge, Massachusetts, he, his wife and three young boys shared a two-room dormitory apartment for six years. Now they have a house with a yard and a lot more room to enjoy. He met his wife when she was a visiting student at his undergraduate college in Japan.

A singer with a musical group during his undergraduate days, Jung could have a K-Pop band with his boys, ages 10, 8 and 5, but he now leaves music to them. Instead, he fills free time with virtual study groups: a book club centered in Boston, and a long-time discussion group with Korean friends, with whom he explores machine learning and emerging tools for atomic-scale modeling. Jung and his family enjoy visiting the Dollywood amusement park near Knoxville, as well as hiking in the area, especially in the Great Smoky Mountains.


Source: Lawrence Bernard, ORNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaboration, an Intel executive said last week. There are close t Read more…

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

AWS Solution Channel

Shutterstock 110419589

Thank you for visiting AWS at SC22

Accelerate high performance computing (HPC) solutions with AWS. We make extreme-scale compute possible so that you can solve some of the world’s toughest environmental, social, health, and scientific challenges. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaborat Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the c Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Leading Solution Providers

Contributors

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire