Penn State Advances in Quantum Tech: Unveiling New Superconductive Materials

February 9, 2024

UNIVERSITY PARK, Pa., Feb. 9, 2024 — A new fusion of materials, each with special electrical properties, has all the components required for a unique type of superconductivity that could provide the basis for more robust quantum computing. The new combination of materials, created by a team led by researchers at Penn State, could also provide a platform to explore physical behaviors similar to those of mysterious, theoretical particles known as chiral Majoranas, which could be another promising component for quantum computing.

A team led by Penn State researchers has demonstrated superconductivity at the interface between the fusion of two magnetic materials, a ferromagnet (Cr-doped (Bi, Sb)2Te) and an antiferromagnet (FeTe). The system has all the components required for unique type of superconductivity called chiral topological superconductivity, which could provide the basis for more robust quantum computing. Left: Schematic lattice structure and cross-sectional STEM image. Right: R-T curve (top) and superconductivity gap (bottom). Credit: Chang Lab/Penn State.

The new study appeared online this week in the journal Science. The work describes how the researchers combined the two magnetic materials in what they called a critical step toward realizing the emergent interfacial superconductivity, which they are currently working toward.

Superconductors — materials with no electrical resistance — are widely used in digital circuits, the powerful magnets in magnetic resonance imaging (MRI) and particle accelerators, and other technology where maximizing the flow of electricity is crucial. When superconductors are combined with materials called magnetic topological insulators — thin films only a few atoms thick that have been made magnetic and restrict the movement of electrons to their edges — the novel electrical properties of each component work together to produce “chiral topological superconductors.” The topology, or specialized geometries and symmetries of matter, generates unique electrical phenomena in the superconductor, which could facilitate the construction of topological quantum computers.

Quantum computers have the potential to perform complex calculations in a fraction of the time it takes traditional computers because, unlike traditional computers which store data as a one or a zero, the quantum bits of quantum computers store data simultaneously in a range of possible states. Topological quantum computers further improve upon quantum computing by taking advantage of how electrical properties are organized to make the computers robust to decoherence, or the loss of information that happens when a quantum system is not perfectly isolated.

“Creating chiral topological superconductors is an important step toward topological quantum computation that could be scaled up for broad use,” said Cui-Zu Chang, Henry W. Knerr Early Career Professor and associate professor of physics at Penn State and co-corresponding author of the paper. “Chiral topological superconductivity requires three ingredients: superconductivity, ferromagnetism and a property called topological order. In this study, we produced a system with all three of these properties.”

The researchers used a technique called molecular beam epitaxy to stack together a topological insulator that has been made magnetic and an iron chalcogenide (FeTe), a promising transition metal for harnessing superconductivity. The topological insulator is a ferromagnet — a type of magnet whose electrons spin the same way — while FeTe is an antiferromagnet, whose electrons spin in alternating directions. The researchers used a variety of imaging techniques and other methods to characterize the structure and electrical properties of the resulting combined material and confirmed the presence of all three critical components of chiral topological superconductivity at the interface between the materials.

Prior work in the field has focused on combining superconductors and nonmagnetic topological insulators. According to the researchers, adding in the ferromagnet has been particularly challenging.

“Normally, superconductivity and ferromagnetism compete with each other, so it is rare to find robust superconductivity in a ferromagnetic material system,” said Chao-Xing Liu, professor of physics at Penn State and co-corresponding author of the paper. “But the superconductivity in this system is actually very robust against the ferromagnetism. You would need a very strong magnetic field to remove the superconductivity.”

The research team is still exploring why superconductivity and ferromagnetism coexist in this system.

“It’s actually quite interesting because we have two magnetic materials that are non-superconducting, but we put them together and the interface between these two compounds produces very robust superconductivity,” Chang said. “Iron chalcogenide is antiferromagnetic, and we anticipate its antiferromagnetic property is weakened around the interface to give rise to the emergent superconductivity, but we need more experiments and theoretical work to verify if this is true and to clarify the superconducting mechanism.”

Chang noted the University’s contributions to facilitating the finding.

“Penn State recently provided the resources for acquiring a state-of-the-art imaging system, a low temperature scanning tunneling microscope, which was crucial in justifying our experimental claims,” Chang said. “I’m delighted that we were able to rapidly make an important scientific discovery with this investment.”

The researchers said they believe this system will be useful in the search for material systems that exhibit similar behaviors as Majorana particles — theoretical subatomic particles first hypothesized in 1937. Majorana particles act as their own antiparticle, a unique property that could potentially allow them to be used as quantum bits in quantum computers.

“Providing experimental evidence for the existence of chiral Majorana will be a critical step in the creation of a topological quantum computer,” Chang said. “Our field has had a rocky past in trying to find these elusive particles, but we think this is a promising platform for exploring Majorana physics.”

In addition to Chang and Liu, the research team at Penn State at the time of the research included postdoctoral researcher Hemian Yi; graduate students Yi-Fan Zhao, Ruobing Mei, Zi-Jie Yan, Ling-Jie Zhou, Ruoxi Zhang, Zihao Wang, Stephen Paolini and Run Xiao; assistant research professors in the Materials Research Institute Ke Wang and Anthony Richardella; Evan Pugh University Professor Emeritus of Physics Moses Chan; and Verne M. Willaman Professor of Physics and Professor of Materials Science and Engineering Nitin Samarth. The research team also includes Ying-Ting Chan and Weida Wu at Rutgers University; Jiaqi Cai and Xiaodong Xu at the University of Washington; Xianxin Wu at the Chinese Academy of Sciences; John Singleton and Laurel Winter at the National High Magnetic Field Laboratory; Purnima Balakrishnan and Alexander Grutter at the National Institute of Standards and Technology; and Thomas Prokscha, Zaher Salman, and Andreas Suter at the Paul Scherrer Institute of Switzerland.

This research is supported by the U.S. Department of Energy. Additional support was provided by the U.S. National Science Foundation (NSF), the NSF-funded Materials Research Science and Engineering Center for Nanoscale Science at Penn State, the Army Research Office, the Air Force Office of Scientific Research, the state of Florida and the Gordon and Betty Moore Foundation’s EPiQS Initiative. The thin film materials used in this study were synthesized and characterized in Penn State’s 2DCC, an NSF-funded user facility.


Source: Gail McCormick, Penn State

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket for an optional 8087 math coprocessor. The math coprocessor ma Read more…

IonQ Reports Advance on Path to Networked Quantum Computing

February 22, 2024

IonQ reported reaching a milestone in its efforts to use entangled photon-ion connectivity to scale its quantum computers. IonQ’s quantum computers are based on trapped ions which feature long coherence times and qubit Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Apple. Today the consumer electronics giant started rolling Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to derive any substantial value from it. However, the GenAI hyp Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performance Benchmarks – that builds on earlier work and is an eff Read more…

AWS Solution Channel

Shutterstock 2283618597

Deep-dive into Ansys Fluent performance on Ansys Gateway powered by AWS

Today, we’re going to deep-dive into the performance and associated cost of running computational fluid dynamics (CFD) simulations on AWS using Ansys Fluent through the Ansys Gateway powered by AWS (or just “Ansys Gateway” for the rest of this post). Read more…

Atom Computing Reports Advance in Scaling Up Neutral Atom Qubit Arrays

February 15, 2024

The scale-up challenge facing quantum computing (QC) is daunting and varied. It’s commonly held that 1 million qubits (or more) will be needed to deliver practical fault tolerant QC. It’s also a varied challenge beca Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performa Read more…

The Pulse of HPC: Tracking 4.5 Million Heartbeats of 3D Coronary Flow

February 15, 2024

Working in Duke University's Randles Lab, Cyrus Tanade, a National Science Foundation graduate student fellow and Ph.D. candidate in biomedical engineering, is Read more…

It Doesn’t Get Much SWEETER: The Winter HPC Computing Festival in Corpus Christi

February 14, 2024

(Main Photo by Visit Corpus Christi CrowdRiff) Texas A&M University's High-Performance Research Computing (HPRC) team hosted the "SWEETER Winter Comput Read more…

Q-Roundup: Diraq’s War Chest, DARPA’s Bet on Topological Qubits, Citi/Classiq Explore Optimization, WEF’s Quantum Blueprint

February 13, 2024

Yesterday, Australian start-up Diraq added $15 million to its war chest (now $120 million) to build a fault tolerant computer based on quantum dots. Last week D Read more…

2024 Winter Classic: Razor Thin Margins in HPL/HPCG

February 12, 2024

The first task for the 11 teams in the 2024 Winter Classic student cluster competition was to run and optimize the LINPACK and HPCG benchmarks. As usual, the Read more…

2024 Winter Classic: We’re Back!

February 9, 2024

The fourth edition of the Winter Classic Invitational Student Cluster Competition is up and running. This year, we have 11 teams of eager students representin Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire