TUK Physicists Slide Closer to Understanding Lubrication at the Nanoscale

March 5, 2020

March 5, 2020 — As humanity has advanced its knowledge and understanding of science and engineering, our ability to construct increasingly specialized and complex technologies has been anchored by our ability to understand material interactions at an increasingly small scale.

Many technical and industrial processes are considered tribological processes. Here, two surfaces in motion interact with one another, such as when two cogs in a machine thread with one another, or a manufacturing machine removes material to shape a part or component. In many cases, two solid materials interacting with one another can wear out the constituent pieces quickly or cause deformations in the material. Engineers often use lubricants to prolong the lifetime of parts and ensure smooth operating conditions.

A snapshot of one the TU Kaiserslautern team’s cutting simulations. These atomic-scale simulations were done on HPC resources at the High-Performance Computing Center Stuttgart and the Leibniz Supercomputing Centre in Garching. Image courtesy of Laboratory of Engineering Thermodynamics (LTD)/ TU Kaiserslautern.

While we have long used lubrication in the internal combustion engine, and gear boxes, and the machinery for manufacturing, we still have only a preliminary understanding of the fundamental behavior and processes at the atomic scale.

In order to better understand the function of lubrication in tribological processes, researchers from the Technische Universität Kaiserslautern (TUK) have been using high-performance computing (HPC) resources at the High-Performance Computing Center Stuttgart (HLRS) and the Leibniz Supercomputing Centre (LRZ) in Garching near Munich to study these interactions at the atomic scale. The team’s research was recently published in Langmuir. 

“For the research community, understanding tribological systems is crucial, but very little effort is spent on simulating contact processes under the influence of lubricants at the atomic level,” says Simon Stephan, the TUK researcher leading this aspect of the team’s research. “Understanding the mechanisms and phenomena occurring in such systems will give us a chance to significantly improve tribological properties in a large variety of applications and also understand why certain fluids are good lubricants and others are not.”

The TUK researchers are focusing on nanoscopic fundamentals of lubricated contact processes under the auspices of two DFG funded projects: SFB 926 (Microscale Morphology of Component Surfaces), an interdisciplinary cooperation involving mechanical engineering, process engineering, and surface physics; and IRTG 2057 (Physical Modeling for Virtual Manufacturing Systems and Processes), an international graduate school for PhD students focusing on the physical modeling of manufacturing processes.

Slick simulations

While researchers understand the basic aspects of how lubricants influence tribological processes at the macro- and microscale, there is very little experimental data illuminating these processes on an atomic level. Observing these phenomena experimentally is practically impossible, as the contact zones are inaccessible due to their size and the fact that they are enclosed within solid parts. In addition, temperature and pressure conditions are usually extremely high where the contact takes place.

For these reasons, the TU Kaiserslautern researchers turned to molecular simulations to computationally examine tribological processes at the nanoscale.

Using the world-class supercomputing resources at HLRS and LRZ, it is becoming possible to create simulations that are both large enough to understand how tribological phenomena influence a real-world system and precise enough to capture the atomic-level details necessary for understanding them at a fundamental level.

“Tribological processes are a combination of many aspects that are happening simultaneously,” Stephan says. “You need a realistic model for your fluid molecules, your substrate atoms, and the fluid-substrate interactions, as well as a proper geometric set up, among other things. If you don’t model a big enough system, though, you can’t really see and understand how different phenomena interact, like the local temperature in the contact zone and the heat fluxes into the fluid and the solid bodies.”

Using the Hazel Hen supercomputer at HLRS and the SuperMUC supercomputer at LRZ to carry out its simulations, the team wanted to focus on the influence of the interactions between fluid and solid atoms in tribological processes in the context of how lubricants influence friction and cutting processes.

The team’s simulations were the first ever systematic investigation of the influence of the solid-fluid interaction energy on a nanoscopic contact process between two solid parts fully submerged in a liquid.

The researchers found that lubricants reduced friction by 25 percent and reduced the heat impact on the solid bodies by up to 20 percent. Using a large cluster of simulations, the team showed that the interactions between solid and fluid atoms have an important influence on the number of lubricant molecules being trapped in the contact zone and on other tribological properties.

Foundations for the future

The team’s model and simulations serve as a proof of concept for their computational approach. As computing power continues to increase, the researchers hope to be able to increase the simulation complexity by applying their approach to more realistic rough surfaces or more complex lubricant molecules.

While Stephan is happy with the hardware capabilities at the GCS centers, he is hopeful that next-generation machines with larger numbers of compute cores will allow the team to run simulations more frequently and flexibly, enabling the team to apply its approach to more specific applications and to extend their work to more complex (and realistic) scenarios.

“We are very satisfied with the access we have to the hardware at the GCS centers,” he said.” We hope that as the next generation machines come online and expand their core counts, we are able to get our simulations done 4 to 5 times faster than we can right now. That will ultimately allow us to perform our simulations in even more realistic directions.”

About Gauss Centre for Supercomputing

Scientists and engineers in countless fields have come to increasingly rely upon high-performance computing (HPC) to help solve complex scientific challenges. The GCS is dedicated to fostering scientific discovery by providing German and European researchers access to state-of-the-art HPC resources as well as the highest level of HPC expertise, services, and support. The Gauss Centre for Supercomputing’s primary goal is fostering scientific discovery through access to high-performance computing (HPC) resources as well as the sustained development of computer-aided scientific research in Germany and Europe by providing the highest level of HPC expertise, services and support, as well as state-of-the art HPC resources.


Source: Eric Gedenk, Gauss Centre for Supercomputing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Supersonic Jets, Skin Modeling, Astrophysics & More

March 31, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

LLNL Leverages Supercomputing to Identify COVID-19 Antibody Candidates

March 30, 2020

As COVID-19 sweeps the globe to devastating effect, supercomputers around the world are spinning up to fight back by working on diagnosis, epidemiology, treatment and vaccine development. Now, Lawrence Livermore National Read more…

By Staff report

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium-Range Weather Forecasts and the U.S. National Oceanic and At Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be nearer to becoming a practical reality. In this second inst Read more…

By John Russell

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

SiFive Accelerates Chip Design with Cloud Tools

March 25, 2020

Chip designers are drawing on new cloud resources along with conventional electronic design automation (EDA) tools to accelerate IC templates from tape-out to custom silicon. Among the challengers to chip design leade Read more…

By George Leopold

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

Servers Headed to Junkyard Find 2nd Life Fighting Cancer in Clusters

March 20, 2020

Ottawa-based charitable organization Cancer Computer is on a mission to stamp out cancer and other life-threatening diseases, including coronavirus, by putting Read more…

By Tiffany Trader

Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application... Read more…

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This