TUK Physicists Slide Closer to Understanding Lubrication at the Nanoscale

March 5, 2020

March 5, 2020 — As humanity has advanced its knowledge and understanding of science and engineering, our ability to construct increasingly specialized and complex technologies has been anchored by our ability to understand material interactions at an increasingly small scale.

Many technical and industrial processes are considered tribological processes. Here, two surfaces in motion interact with one another, such as when two cogs in a machine thread with one another, or a manufacturing machine removes material to shape a part or component. In many cases, two solid materials interacting with one another can wear out the constituent pieces quickly or cause deformations in the material. Engineers often use lubricants to prolong the lifetime of parts and ensure smooth operating conditions.

A snapshot of one the TU Kaiserslautern team’s cutting simulations. These atomic-scale simulations were done on HPC resources at the High-Performance Computing Center Stuttgart and the Leibniz Supercomputing Centre in Garching. Image courtesy of Laboratory of Engineering Thermodynamics (LTD)/ TU Kaiserslautern.

While we have long used lubrication in the internal combustion engine, and gear boxes, and the machinery for manufacturing, we still have only a preliminary understanding of the fundamental behavior and processes at the atomic scale.

In order to better understand the function of lubrication in tribological processes, researchers from the Technische Universität Kaiserslautern (TUK) have been using high-performance computing (HPC) resources at the High-Performance Computing Center Stuttgart (HLRS) and the Leibniz Supercomputing Centre (LRZ) in Garching near Munich to study these interactions at the atomic scale. The team’s research was recently published in Langmuir. 

“For the research community, understanding tribological systems is crucial, but very little effort is spent on simulating contact processes under the influence of lubricants at the atomic level,” says Simon Stephan, the TUK researcher leading this aspect of the team’s research. “Understanding the mechanisms and phenomena occurring in such systems will give us a chance to significantly improve tribological properties in a large variety of applications and also understand why certain fluids are good lubricants and others are not.”

The TUK researchers are focusing on nanoscopic fundamentals of lubricated contact processes under the auspices of two DFG funded projects: SFB 926 (Microscale Morphology of Component Surfaces), an interdisciplinary cooperation involving mechanical engineering, process engineering, and surface physics; and IRTG 2057 (Physical Modeling for Virtual Manufacturing Systems and Processes), an international graduate school for PhD students focusing on the physical modeling of manufacturing processes.

Slick simulations

While researchers understand the basic aspects of how lubricants influence tribological processes at the macro- and microscale, there is very little experimental data illuminating these processes on an atomic level. Observing these phenomena experimentally is practically impossible, as the contact zones are inaccessible due to their size and the fact that they are enclosed within solid parts. In addition, temperature and pressure conditions are usually extremely high where the contact takes place.

For these reasons, the TU Kaiserslautern researchers turned to molecular simulations to computationally examine tribological processes at the nanoscale.

Using the world-class supercomputing resources at HLRS and LRZ, it is becoming possible to create simulations that are both large enough to understand how tribological phenomena influence a real-world system and precise enough to capture the atomic-level details necessary for understanding them at a fundamental level.

“Tribological processes are a combination of many aspects that are happening simultaneously,” Stephan says. “You need a realistic model for your fluid molecules, your substrate atoms, and the fluid-substrate interactions, as well as a proper geometric set up, among other things. If you don’t model a big enough system, though, you can’t really see and understand how different phenomena interact, like the local temperature in the contact zone and the heat fluxes into the fluid and the solid bodies.”

Using the Hazel Hen supercomputer at HLRS and the SuperMUC supercomputer at LRZ to carry out its simulations, the team wanted to focus on the influence of the interactions between fluid and solid atoms in tribological processes in the context of how lubricants influence friction and cutting processes.

The team’s simulations were the first ever systematic investigation of the influence of the solid-fluid interaction energy on a nanoscopic contact process between two solid parts fully submerged in a liquid.

The researchers found that lubricants reduced friction by 25 percent and reduced the heat impact on the solid bodies by up to 20 percent. Using a large cluster of simulations, the team showed that the interactions between solid and fluid atoms have an important influence on the number of lubricant molecules being trapped in the contact zone and on other tribological properties.

Foundations for the future

The team’s model and simulations serve as a proof of concept for their computational approach. As computing power continues to increase, the researchers hope to be able to increase the simulation complexity by applying their approach to more realistic rough surfaces or more complex lubricant molecules.

While Stephan is happy with the hardware capabilities at the GCS centers, he is hopeful that next-generation machines with larger numbers of compute cores will allow the team to run simulations more frequently and flexibly, enabling the team to apply its approach to more specific applications and to extend their work to more complex (and realistic) scenarios.

“We are very satisfied with the access we have to the hardware at the GCS centers,” he said.” We hope that as the next generation machines come online and expand their core counts, we are able to get our simulations done 4 to 5 times faster than we can right now. That will ultimately allow us to perform our simulations in even more realistic directions.”

About Gauss Centre for Supercomputing

Scientists and engineers in countless fields have come to increasingly rely upon high-performance computing (HPC) to help solve complex scientific challenges. The GCS is dedicated to fostering scientific discovery by providing German and European researchers access to state-of-the-art HPC resources as well as the highest level of HPC expertise, services, and support. The Gauss Centre for Supercomputing’s primary goal is fostering scientific discovery through access to high-performance computing (HPC) resources as well as the sustained development of computer-aided scientific research in Germany and Europe by providing the highest level of HPC expertise, services and support, as well as state-of-the art HPC resources.


Source: Eric Gedenk, Gauss Centre for Supercomputing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire